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1 CATEGORY AND FUNCTOR

Category

In category theory, we will encounter many presentations in terms of diagrams. Roughly speaking, a
diagram is a collection of ‘objects’ denoted by A, B, C, X, Y, · · · , and ‘arrows‘ between them denoted by
f , g, · · · , as in the examples

A
f
//

h   

B

g
��

C

X
f1 //

g1
��

Y

f2
��

Z
g2 // W

We will always have an operation ◦ to compose arrows. The diagram is called commutative if all the
composite paths between two objects ultimately compose to give the same arrow. For the above examples,
they are commutative if

h = g ◦ f f2 ◦ f1 = g2 ◦ g1.

Definition 1.1. A category C consists of

1◦. A class of objects: Obj(C) (a category is called small if its objects form a set).
We will write both A ∈ Obj(C) and A ∈ C for an object A in C.

2◦. A set of morphisms: HomC(A, B) for each A, B ∈ Obj(C). An element f ∈ HomC(A, B) will be
called a morphism from X to Y, and denoted by

A
f−→ B or f : A→ B.

When C is clear from the context, we will simply write Hom(A, B) for HomC(A, B).
3◦. A composition operation ◦ between morphisms

HomC(A, B)×HomC(B, C)→ HomC(A, C), for each A, B, C ∈ Obj(C)

f × g→ g ◦ f ,

which will be denoted in terms of a diagram by

A
f
//

g◦ f   

B

g
��

C

These are subject to the following axioms:

1◦. Associativity: h ◦ (g ◦ f ) = (h ◦ g) ◦ f holds, and will be denoted by h ◦ g ◦ f without ambiguity.
This property can be expressed in terms of the following commutative diagram

A
f
//

g◦ f   

B

g
��

h◦g

��C h //

2◦. Identity: for each A ∈ Obj(C), there exists 1A ∈ HomC(A, A) called the identity element such that

f ◦ 1A = f = 1B ◦ f , ∀A
f−→ B,
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1 CATEGORY AND FUNCTOR

i.e. we have the following commutative diagrams

A
1A //

f   

A

f
��

B

A
f
//

f   

B

1B
��

B

Definition 1.2. A subcategory C ′ of C (denoted by C ′ ⊂ C) is a category such that

1◦. Obj(C ′) ⊂ Obj(C)
2◦. HomC ′(A, B) ⊂ HomC(A, B), ∀A, B ∈ Obj(C ′)
3◦. compositions in C ′ coincide with that in C under the above inclusion.

C ′ is called a full subcategory of C if HomC ′(A, B) = HomC(A, B), ∀A, B ∈ Obj(C ′).

Definition 1.3. A morphism f : A → B is called an isomorphism (or invertible) if there exists g : B → A
such that f ◦ g = 1B and g ◦ f = 1A, i.e. we have the following commutative diagram

A
f
++1A 77 B

g
ll 1Bff

Two objects A, B are called isomorphic if there exists an isomorphism f : A→ B.

Example 1.4. We will frequently use the following categories.

1◦. C = Set, the category of sets:

Obj(C) = {set}, HomC(A, B) = {set map A→ B}.

2◦. C = Vectk, the category of vector spaces over a field k:

Obj(C) = {k-vector space}, HomC(A, B) = {k-linear map A→ B}.

Vectk is a subcategory of Set, but not a full subcategory.
3◦. C = Group, the category of groups:

Obj(C) = {group}, HomC(A, B) = {group homomorphism A→ B}.

It has a full subcategory

Ab, the category of abelian groups.

4◦. C = Ring, the category of rings:

Obj(C) = {ring}, HomC(A, B) = {ring homomorphism A→ B}.

Ring is a subcategory of Ab, but not a full subcategory. Ring has a full subcategory

CRing, the category of commutative rings.

The main object of our interest is

Top : = the category of topological spaces

• whose objects are topological spaces and
• whose morphisms f : X → Y are continuous maps.

Example 1.5. Let C and D be two categories. We can construct a new category C ×D, called the product of
C and D, as follows.
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• An object of C ×D is a pair (X, Y) of objects X ∈ C and Y ∈ D.
• A morphism ( f , g) : (X1, Y1)→ (X2, Y2) is a pair of f ∈ HomC(X1, X2), g ∈ HomD(Y1, Y2).
• Compositions are componentwise.

Quotient category and homotopy

Definition 1.6. Let C be a category. Let ' be an equivalence relation defined on each HomC(A, B), A, B ∈
Obj(C) and compatible with the composition in the following sense

f1 ' f2, g1 ' g2 =⇒ g1 ◦ f1 ' g2 ◦ f2.

The compatibility can be represented by the following diagram

A B C A C

f1

f2

'

g1

g2

'

g1◦ f1

g2◦ f2

'

We say ' defines an equivalence relation on C. The quotient category C ′ = C/ ' is defined by

• Obj(C ′) = Obj(C ′)
• HomC ′(A, B) = HomC(A, B)/ ', ∀A, B ∈ Obj(C ′).

Exercise 1.7. Check the definition above is well-defined.

One of the most important equivalence relations in algebraic topology is the homotopy relation.

Let I = [0, 1]. Let X×Y denote the topological product of X, Y ∈ Top.

Definition 1.8. Two morphisms f0, f1 : X → Y in Top are said to be homotopic, denoted by f0 ' f1, if

∃F : X× I → Y such that F|X×{0} = f0 and F|X×{1} = f1.

We will also write F : f0 ' f1 or f0
F' f1 to specify the homotopy F. This can be illustrated as

FI F−−−−→ Y

f1

f0

Let f : X → Y be a morphism in Top. We define its homotopy class

[ f ] : {g ∈ Hom(X, Y) | g ' f }.

We denote

[X, Y] : = Hom(X, Y)/ ' .

Theorem 1.9. Homotopy defines an equivalence relation on Top.

Proof. We first check that ' defines an equivalence relation on morphisms.

• Reflexivity: Take F such that F |X×t= f for any t ∈ I.
4
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• Symmetry: Assume we have a homotopy F : f0 ' f1. Then reversing I as

FI −→ Y

f1

f0

=⇒ F̃I −→ Y

f0

f1

i.e. taking F̃(x, t) = F(x, 1− t) : X× I → Y, gives f1 ' f0 as required.
• Transitivity: Assume we have two homotopies F : f0 ' f1 and G : f1 ' f2, then putting them

together gives F̃ : f0 ' f2 as

G

F

1
2

0

1

F̃−→ Y

f2

f0

f1
F̃(x, t) =

G(x, 2t− 1), 1/2 ≤ t ≤ 1;

F(x, 2t), 0 ≤ t ≤ 1/2.

We next check ' is compatible with compositions.

Let f0, f1 : X → Y and g0, g1 : Y → Z. Assume f0
F' f1 and g0

G' g1. Then

FI −→ Y

f1

f0

−→ Z
g0

=⇒ g0 ◦ f0 ' g0 ◦ f1

f1 × idI →

f1

f1

G −→ Z

g1

g0

=⇒ g0 ◦ f1 ' g1 ◦ f1

By transitivity, we have proved the compatibility g0 ◦ f0 ' g0 ◦ f1 ' g1 ◦ f1. �

We denote the quotient category of Top under homotopy relation ' by

hTop = Top / '

with morphisms HomhTop(X, Y) = [X, Y].

Definition 1.10. Two topological spaces X, Y are said to have the same homotopy type (or homotopy equiv-
alent) if they are isomorphic in hTop.

Example 1.11. R and R2 are homotopy equivalent, but not homeomorphic. In other words, they are iso-
morphic in hTop, but not isomorphic in Top. As we will see, R1 and S1 are not homotopy equivalent.

There is also a relative version of homotopy as follows.
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1 CATEGORY AND FUNCTOR

Definition 1.12. Let A ⊂ X ∈ Top and f0, f1 : X → Y such that f0|A = f1|A : A → Y. We say f0 is
homotopic to f1 relative to A, denoted by

f0 ' f1 rel A

if there exists F : X× I → Y such that

F|X×{0} = f0, F|X×{1} = f1, F|A×t = f0|A, ∀t ∈ I.

We will also write F : f0 ' f1 rel A or f0
F' f1 rel A to specify the homotopy F.

A

ft(A)

YFI F−−−−→

f1

f0

Functor

Definition 1.13. Let C,D be two categories. A covariant functor (resp. contravariant functor) F : C → D
consists of

1◦. F : Obj(C)→ Obj(D), A→ F(A)

2◦. HomC(A, B)→ HomD(F(A), F(B)), ∀A, B ∈ Obj(C). We denote by

A
f−→ B =⇒ F(A)

F( f )→ F(B)

(resp. HomC(A, B)→ HomD(F(B), F(A)), ∀A, B ∈ Obj(C), denoted by

A
f−→ B =⇒ F(B)

F( f )→ F(A). )

satisfying

1◦. F(g ◦ f ) = F(g) ◦ F( f ) (resp. F(g ◦ f ) = F( f ) ◦ F(g)) for any composable morphisms f , g

A
f
//

g◦ f   

B

g
��

C

=⇒
F(A)

F( f )
//

F(g)◦F( f ) ##

F(B)

F(g)
��

F(C)

(resp. reversing all arrows in the diagram on the right).
2◦. F(1A) = 1F(A), ∀A ∈ Obj(C).

F is called faithful (or full) if HomC(A, B)→ HomD(F(A), F(B)) is injective (or surjective) ∀A, B ∈ Obj(C).

Example 1.14. The identity functor 1C : C → C maps

1C(A) = A, 1C( f ) = f

for any object A and morphism f .

Example 1.15. ∀X ∈ Obj(C),

Hom(X,−) : C → Set,
A 7→ Hom(X, A)
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1 CATEGORY AND FUNCTOR

defines a covariant functor and

Hom(−, X) : C → Set,
A 7→ Hom(A, X)

defines a contravariant functor.

Functors of these two types are called representable (by X).

Example 1.16. The forgetful functor Group→ Set (mapping a group to its set of group elements) is repre-
sentable by the free group with one generator.

Example 1.17. Let G be an abelian group. Given X ∈ Top, we will study its n-th cohomology Hn(X; G)

with coefficients in G. It defines a contravariant functor

Hn(−; G) : hTop→ Set, X → Hn(X; G).

We will see that this functor is representable by the Eilenberg-Maclane space K(G, n) if we work with the
subcategory of CW-complexes.

Example 1.18. We define a contravariant functor

Fun : Top→ Ring, X → Fun(X) = HomTop(X, R).

Fun(X) are continuous real functions on X. A classical result of Gelfand-Kolmogoroff says that two com-
pact Hausdorff spaces X, Y are homeomorphic (i.e. isomorphic in Top) if and only if Fun(X) and Fun(Y)
are ring isomorphism (i.e. isomorphic in Ring).

Proposition 1.19. Let F : C → D be a functor. Suppose f : A → B is an isomorphism in C, then F( f ) : F(A) →
F(B) is an isomorphism in D.

Proof. Exercise. �

Natural transformation

Definition 1.20. Let C,D be two categories and F, G : C → D be two functors. A natural transformation
τ : F ⇒ G consists of morphisms

τ = {τA : F(A)→ G(A)|∀A ∈ Obj(C)}

such that the following diagram commutes for any A, B ∈ Obj(C) (here f : A→ B if F, G are covariant and
f : B→ A if F, G are contravariant)

F(A)

τA

��

F( f )
// F(B)

τB

��
G(A)

G( f )
// G(B)

τ is called a natural isomorphism if τA is an isomorphism for any A ∈ Obj(C) and we write F ' G.

Example 1.21. We consider the following two functors

GLn, (−)× : CRing→ Group .

Given a commutative ring R ∈ CRing, GLn(R) is the group of invertible n× n matrices with entries in R,
and R× is the multiplicative group of invertible elements of R. We can identity (−)× = GL1.
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The determinant defines a natural transformation

det : GLn → (−)×

where detR : GLn(R) → R× is the determinant of the matrix. The naturality of det is rooted in the fact
that the formula for determinant is the same for any coefficient ring. In this way, we can say precisely that
taking the determinant of a matrix is a natural operation.

Example 1.22. Let A, B ∈ C and f : A→ B. We have

• A natural transformation

f∗ : Hom(−, A)⇒ Hom(−, B)

for (contravariant) representable functors Hom(−, A), Hom(−, B) : C → Set.
• A natural transformation

f ∗ : Hom(B,−)⇒ Hom(A,−)

for (covariant) representable functors Hom(A,−), Hom(B,−) : C → Set.

Example 1.23. The above example is a special case of the following construction. Let A ∈ C.

• Let F : C → Set be a contravariant functor. Then any ϕ ∈ F(A) induces a natural transformation

Hom(−, A)⇒ F

by assigning f ∈ Hom(B, A) to F( f )(ϕ) ∈ F(B).
• Let G : C → Set be a covariant functor. Then any ϕ ∈ G(A) induces a natural transformation

Hom(A,−)⇒ G

by assigning f ∈ Hom(A, B) to G( f )(ϕ) ∈ G(B).

Definition 1.24. Let F, G, H : C → D be functors and τ1 : F ⇒ G, τ2 : G ⇒ H be two natural transforma-
tions. The composition τ2 ◦ τ1 is a natural transformation from F to H defined by

(τ2 ◦ τ1)A : F(A)
τ1→ G(A)

τ2→ H(A), ∀A ∈ Obj(C).

C D compose to C D

F

G

H

τ1

τ2

F

H

τ2◦τ1

Definition 1.25. Two categories C,D are called isomorphic if ∃F : C → D, G : D → C such that F ◦ G =

1D , G ◦ F = 1C . They are called equivalent if ∃F : C → D, G : D → C such that F ◦ G ' 1D , G ◦ F ' 1C . In
this case, we say F : C → D gives an isomorphism/equivalence of categories.

In applications, isomorphism is a too strong condition to impose for most interesting functors. Equiva-
lence is more realistic and equally good essentially. The following proposition is very useful in practice.

Proposition 1.26. Let F : C → D be an equivalence of categories. Then F is fully faithful.
8
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Functor Category

Definition 1.27. Let C be a small category, and D be a category. We define the functor category Fun(C,D)

• Objects: functors from C to D

F : C → D.

• Morphisms: natural transformations between two functors (which is indeed a set since C is small).

C D

F

G

The following Yoneda Lemma plays a fundamental role in category theory and applications.

Theorem 1.28 (Yoneda Lemma). Let C be a category and A ∈ C. Denote the two functors

hA = HomC(−, A) : C → Set, hA = HomC(A,−) : C → Set .

1◦. Contravariant version: Let F : C → Set be a contravariant functor. Then there is an isomorphism of sets

HomFun(C,Set) (hA, F) ∼= F(A).

This isomorphism is functorial in A.
2◦. Covariant version: Let G : C → Set be a covariant functor. Then there is an isomorphism of sets

HomFun(C,Set)

(
hA, G

)
∼= G(A).

This isomorphism is functorial in A.

The precise meaning of functoriality in A is that we have isomorphisms of functors C → Set

HomFun(C,Set)

(
h(−), F

)
∼= F(−), HomFun(C,Set)

(
h(−), G

)
∼= G(−).

The required isomorphisms in the above Yoneda Lemma are those maps described in Example 1.23.

Duality

Many concepts and statements in category theory have dual descriptions. It is worthwhile to keep eyes
on such dualities. Roughly speaking, the dual of a category-theoretical expression is the result of reversing
all the arrows for morphisms, changing each reference to a domain to refer to the target (and vice versa),
and reversing the order of composition.

For example, let C for a category. We can define its opposite category Cop by declaring

• Obj(Coop) = Obj(C);
• f : A→ B is a morphism in Cop if and only if f : B→ A is a morphism in C;
• the composition of two morphisms g ◦ f in Cop is the same as the composite f ◦ g in C.

A contravariant functor F : C → D is the same as a covariant functor F : Cop → D. With this help, we
can work entirely with covariant functors or contravariant functors. For example, the two statements in
Yoneda Lemma are actually the same if we consider opposite categories.

9
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An another example, we will often consider the lifting problem by finding a map F : X → E such that
the following diagram is commutative

E

p
��

X

F
??

f
// B

The dual problem is the extension problem by finding a map G such that the dual diagram is commutative

E

X
��

G

B
g
oo

j

OO

Adjunction

Let C,D be two categories, and let L : C → D, R : D → C be two (covariant) functors. The rules

(A, B)→ HomD(L(A), B), (A, B)→ HomC(A, R(B)), A ∈ Obj(C), B ∈ Obj(D)

define two functors
HomD(L(−),−), HomC(−, R(−)) : Cop ×D → Set .

We say L and R are adjoint to one another (more precisely, L is the left adjoint, R is the right adjoint), if
there is a natural isomorphism

τ : HomD(L(−),−) ∼= HomC (−, R(−));

that is, for each A ∈ Obj(C), B ∈ Obj(D), we have a set isomorphism

τA,B : HomD(L(A), B) ∼= HomC(A, R(B))

and this isomorphism is functorial both in A and in B. We sometimes write adjoint functors as

L : C D : R.

Example 1.29 (Free vs Forget). Let X be a set, and F(X) =
⊕

x∈X
Z denote the free abelian group generated

by X. This defines a functor
F : Set→ Ab, X → F(X).

Forgetting the group structure defines a functor (such functor is often called a forgetful functor)

G : Ab→ Set, A→ A.

These two functors are adjoint to each other

F : Ab Set : G.

In fact, many ”free constructions” in mathematics are left adjoint to certain forgetful functors.

Proposition 1.30. Let L : C D : R be adjoint functors. Then there are natural transformations

1C ⇒ R ◦ L L ◦ R⇒ 1D .

Proof. Given A ∈ C, the required morphism A → RL(A) corresponds to the identity 1L(A) : L(A) → L(A)

under adjoint. The construction of L ◦ R⇒ 1D is similar. �

10



2 FUNDAMENTAL GROUPOID

2 FUNDAMENTAL GROUPOID

Path connected component π0

Definition 2.1. Let X ∈ Top.

• A map γ : I → X is called a path from γ(0) to γ(1).
• We denote γ−1 be the path from γ(1) to γ(0) defined by γ−1(t) = γ(1− t)
• We denote ix0 : I → X be the constant map to x0 ∈ X.

X
γ

•x0 •x1

X
γ−1

•x0 •x1

FIGURE 1. A path γ in a topological space X and its inverse

Let us introduce an equivalence relation on X by

x0 ∼ x1 ⇐⇒ ∃ a path from x0 to x1.

Remark. Check this is an equivalence relation.

We denote the quotient space
π0(X) = X/ ∼

which is the set of path connected components of X.

Theorem 2.2. π0 : hTop→ Set defines a covariant functor.

Proof. Exercise. �

Corollary 2.3. If X, Y are homotopy equivalent, then π0(X) ∼= π0(Y).

Proof. Applying Proposition 1.19 to the functor π0 : hTop→ Set. �

Path category / fundamental groupoid

Definition 2.4. Let γ : I → X be a path. We define the path class of γ by

[γ] = {γ̃ : I → X|γ ' γ̃ rel ∂I = {0, 1}}.

γ

γ̃

•x0 •x1F

FIGURE 2. In a path class, F : γ ' γ̃ rel ∂I

[γ] is the class of all paths that can be continuously deformed to γ while fixing the endpoints.
11
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Definition 2.5. Let γ1, γ2 : I → X such that γ1(1) = γ2(0). We define the composite path

γ2 ? γ1 : I → X

by

γ2 ? γ1(t) =

γ1(2t) 0 ≤ t ≤ 1/2

γ2(2t− 1) 1/2 ≤ t ≤ 1,

cf. Figure 2.5.

=⇒
γ1 γ2

•• •

γ1

γ2

γ2 ? γ1

FIGURE 3. Composition of paths

Proposition 2.6. Let f1, f2, g1, g2 be paths, such that fi(1) = gi(0), [ f1] = [ f2], [g1] = [g2]. Then

[g1 ? f1] = [g2 ? f2].

Proof. We illustrate the proof as the following, where F : f1 ' f2 and G : g1 ' g2. �

F G =⇒ •
f1

f2

g1

g2

• •F G

We conclude that ? is well-defined for path classes:

[g ? f ] = [g] ? [ f ].

Proposition 2.7 (Associativity). Let f , g, h : I → X with f (1) = g(0) and g(1) = h(0). Then(
[h] ? [g]

)
? [ f ] = [h] ?

(
[g] ? [ f ]

)
.

Proof. We illustrate the proof as follows

F−−−−→ X

f g h

f g h
(
[h] ? [g]

)
? [ f ] =

[h] ?
(
[g] ? [ f ]

)
=

12



2 FUNDAMENTAL GROUPOID

�

Proposition 2.8. Let f : I → X with endpoints f (0) = x0 and f (1) = x1. Then

[ f ] ? [ix0 ] = [ f ] = [ix1 ] ? [ f ].

Proof. We only show the first equality, which follows from the figure below.

F−−−−→ X

ix0

x0

f

f

�

Definition 2.9. Let X ∈ Top. We define a category Π1(X) as follows:

• Obj(Π1(X)) = X.
• HomΠ1(X)(x0, x1)=path classes from x0 to x1.
• 1x0 = ix0 .

The propositions above imply Π1(X) is a well-defined category. Π1(X) is called the path category or
fundamental groupoid of X.

Groupoid

Definition 2.10. A category where all morphisms are isomorphisms is called a groupoid. All groupoids
form a category Groupoid.

Example 2.11. A group G can be regarded as a groupoid G with

• Obj(G) = {?} consists of a single object.
• HomG(?, ?) = G and composition is group multiplication.

Thus we have a fully faithful functor Group→ Groupoid.

Let C be a groupoid, and define the set

Π0(C) = Obj(C)/ ∼,

where A ∼ B if and only if ∃ f : A → B in C. We can view Π0(C) as a (discrete) category whose objects are
its elements with only identity morphisms. Then C → Π0(C) is a functor (path connected component). We
say C is path connected if Π0(C) is one point.

Lemma 2.12. X is path connected if and only if Π0(X) is path connected.

Recall that γ−1 is the inverse of γ.

Theorem 2.13. Let γ : I → X with endpoints γ(0) = x0 and γ(1) = x1. Then

[γ] ? [γ−1] = [1x1 ], and [γ−1] ? [γ] = [1x0 ].

In other words, all morphism in Π1(X) are isomorphisms and thus Π1(X) is a groupoid.
13



2 FUNDAMENTAL GROUPOID

Proof. Let γu : I → X such that γu(t) = γ(tu). The following figure gives the homotopy γ−1 ? γ ' 1x0 :

F−−−−→ X

γ

u
γu γ−1

u

γ−1

γ0 = ix0

�

Exercise 2.14. Use the following figure to give another homotopy γ−1 ? γ ' 1x0 for Theorem 2.13.

F−−−−→ X

r

u
ru r−1

u

ixu

r−1

ix0

Definition 2.15. Let C be a groupoid. Let A ∈ Obj(C), we define its automorphism group by

AutC(A) := HomC(A, A).

Note that this indeed forms a group.

For any f : A→ B, it induces a group isomorphism

Ad f : AutC(A)→ AutC(B)

g→ f ◦ g ◦ f−1.

Here is a figure to illustrate

Ad f : maps Ag to A Bg
f

f−1

This naturally defines a functor

C → Group by assigning A 7→ AutC(A), f 7→ Ad f .

Specialize this to topological spaces, we find a functor

Π1(X)→ Group .

Definition 2.16. Let x0 ∈ X, the group

π1(X, x0) := AutΠ1(X)(x0)

is called the fundamental group of the pointed space (X, x0).

Theorem 2.17. Let X be path connected. Then for x0, x1 ∈ X, we have a group isomorphism

π1(X, x0) ∼= π1(X, x1).
14



2 FUNDAMENTAL GROUPOID

Proof. Consider the functor Π1(X) → Group described above. Since X is path connected and Π1(X) is a
groupoid, any two points x0 and x1 are isomorphic in Π1(X). By Proposition 1.19, π1(X, x0) ∼= π1(X, x1).

�

In the path connected case, we will simply denote by π1(X) the fundamental group without mentioning
the reference point.

Let f : X → Y be a continuous map. It defines a functor

Π1( f ) : Π1(X)→ Π1(Y) by assigning x 7→ f (x), [γ] 7→ [ f ◦ γ].

Proposition 2.18. Π1 defines a functor

Π1 : Top→ Groupoid ,

that sends X to Π1(X).

Proof. Exercise. �

Proposition 2.19. Let f , g : X → Y be maps which are homotopic by F : X× I → Y. Let us define path classes

τx = [F|x×I ] ∈ HomΠ1(Y)( f (x), g(x)),

cf.

F F−−−−→ Y

g

f

τx

x

Then τ defines a natural transformation
τF : Π1( f ) =⇒ Π1(g).

Proof. Let r : I → X with r(t) = xt. We only need to show that the following diagram is commutative at the
level of path classes:

f (x0) = Π1( f )(x0)
f ◦r
//

τx0
��

Π1( f )(x1)

τx1
��

= f (x1)

g(x0) = Π1(g)(x0) g◦r
// Π1(g)(x1) = g(x1)

The composition F ◦ (r× I) gives the following diagram:

τx0 τx1
F−−−−→ Y

g ◦ r

f ◦ r

which implies that [g ◦ r] ? [τx0 ] = [τx1 ] ? [ f ◦ r] as required. �
15



2 FUNDAMENTAL GROUPOID

This proposition can be pictured by the following diagram

Top
Π1 // Groupoid

X

f

,,

g

rr

Π1(X)

Π1( f )

##

Π1(g)

{{

homotopy
=====⇒

F

nat. trans.
=====⇒

τF

Y Π1(Y)

The following theorem is a formal consequence of the above proposition

Theorem 2.20. Let f : X → Y be a homotopy equivalence. Then

Π1( f ) : Π1(X)→ Π1(Y)

is an equivalence of categories. In particular, it induces a group isomorphism

π1(X, x0) ∼= π1(Y, f (x0)),

Proof. Let g : Y → X represents the inverse of f in hTop. Applying Π1 to f ◦ g ' 1Y and g ◦ f ' 1X , we
find Π1( f ) ◦Π1(g) and Π1(g) ◦Π1( f ) are naturally equivalent to identity functors. Thus the first statement
follows. The second statement follows from Proposition 1.26. �

Proposition 2.21. Let X, Y ∈ Top. Then we have a canonical isomorphism of categories

Π1(X×Y) ∼= Π1(X)×Π1(Y).

In particular, for any x0 ∈ X, y0 ∈ Y, we have a group isomorphism

π1(X×Y, x0 × y0) ∼= π1(X, x0)× π1(Y, y0).

Example 2.22. For a point X = pt, π1(pt) = 0 is trivial. It it not hard to see that Rn is homotopy equivalent
to a point. It follows that

π1(R
n) = 0 n ≥ 0.

Example 2.23. As we will see,

π1(S1) = Z, and π1(Sn) = 0, ∀n > 1.

Example 2.24. Let Tn = (S1)n be the n-dim torus. Then

π1(Tn) = Zn.

Example 2.25 (Braid groups). Artin’s braid group Brn of n strings can be realized as mapping class group
(symmetry group) of a disk of n punctures. It has the following finite presentation:

Brn = 〈b1, . . . , bn−1 | bibjbi = bjbibj ∀|j− i| = 1,
bjbi = bibj ∀ |j− i| > 1〉.

Braid groups can be also realized as fundamental groups.

Let X ∈ Top, the nth (ordered) configuration space of X is the set of n pairwise distinct points in X:

Confn(X) : = {x = (x1, . . . , xn) ∈ Xn | xi 6= xj, ∀i 6= j}.

There is a natural action of the permutation group Sn on Confn(X) given by

Sn ×Confn(X) −→ Confn(X)

(σ, x) 7−→ σ(x) = (xσ(1), xσ(2), . . . , xσ(n)).
16



2 FUNDAMENTAL GROUPOID

The unordered configuration space of X is the orbit space of this action:

UConfn(X) = Confn(X)/Sn.

A classical result says
Brn ∼= π1(UConfn(R

2)) ∼= π1(UConfn(D2)).

Moreover, elements in this (fundamental) group can be visulized as braids in R3 as follows. Fix n distinct
points Z1, · · · , Zn in R2. A geometric braid is an n-tuple Ψ = (ψ1, . . . , ψn) of paths

ψi : [0, 1]→ R2 × I ⊂ R3

such that

• ψi(0) = Zi × {0};
• ψi(1) = Zν(i) × {1} for some permutation ν of {1, . . . , n};
• {ψ1(t), . . . , ψn(t)} are distinct points in R2 × {t}, for 0 < t < 1.

The product of geometric braids follows the same way of products of paths (in the fundamental group
setting). The isotopy class of all braids on R3 with the product above form the braid group. See Figure 4.

•◦

•◦

•◦

•◦

•◦

•◦

•◦

•◦

•◦

•◦

FIGURE 4. Classical braids
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3 COVERING AND FIBRATION

3 COVERING AND FIBRATION

Covering and Lifting

Definition 3.1. Let p : E → B be in Top. A trivialization of p over an open set U ⊂ B is a homeomorphism
ϕ : p−1(U)→ U × F over U, i.e. , the following diagram commutes

p−1(U)
ϕ

//

""

U × F

||
U

p is called locally trivial if there exists an open cover U of B such that p has a trivialization over each open
U ∈ U . Such p is called a fiber bundle, F is called the fiber and B is called the base. We denote it by

F → E→ B

where there is no ambiguity from the context. If we can find a trivialization of p over the whole B, then E is
homeomorphic to F× B and we say p is a trivial fiber bundle.

Example 3.2. The projection map

Rm+n → Rn, (x1, · · · , xn, · · · , xn+m) 7→ (x1, · · · , xn)

is a trivial fiber bundle with fiber Rm.

Example 3.3. A real vector bundle of rank n over a manifold is a fiber bundle with fiber ' Rn.

Example 3.4. We identify S2n+1 as the unit sphere in Cn+1 parametrized by

S2n+1 = {z0, z1, · · · , zn ∈ Cn+1||z0|2 + |z1|2 + · · ·+ |zn|2 = 1}.

There is a natural S1-action on S2n+1 given by

eiθ : (z0, · · · , zn) 7→ (eiθz0, · · · , eiθzn), eiθ ∈ S1.

This action is free, and the orbit space can be identified with the n-dim complex projective space CPn

S2n+1/S1 ∼= CPn = (Cn+1 − {0})/C∗.

Then the projection map S2n+1 → CPn is a fiber bundle with fiber S1. It is a nontrivial fact that they are not
trivial fiber bundles. The case when n = 1 gives the Hopf fibratioin

S1 → S3 p−→ S2 = CP1

which is particularly interesting. In this case, the projection sends (z0, z1) ∈ S3 ⊂ C2 to z0/z1 ∈ S2 =

C ∪ {∞}. In polar coordinates, we have zj = rje
iθj for r2

0 + r2
1 = 1 and p(z0, z1) = (r0/r1)ei(θ0−θ1). For

a fix ρ = r0/r1, we obtain a torus Tρ in S3. When identifying S3 with the compatification of R3 (or con-
sidering the stereographic projection S3 → R3), we have the Figure 5 to visualize the foliation of R3 by
these tori Tρ, where T0 degenerates to the unit circle on xy-plane of R3 and T∞ degenerates to z-axis. Each
S1-fiber is a slope 1 simple closed curve on one of the tori Tρ, and the image of the projection is exactly the
compatification S2 of the xy-plane of R3.

Definition 3.5. A covering (space) is a locally trivial map p : E → B with discrete fiber F (cf. Figure 6). A
covering map which is a trivial fiber bundle is also called a trivial covering. If we would like to specify the
fiber, we call it a F-covering. If the fiber F has n points, we also call it a n-fold covering.

18



3 COVERING AND FIBRATION

FIGURE 5. A visualization of Hopf fibration

U

↓

p−1(U) ' U × F

⊂ B U

↓

FIGURE 6. Trivialization (left) and covering (right)

S1

↓exp S1

' R

FIGURE 7. The Z-covering of S1

Example 3.6. The map exp : R1 → S1, t→ e2πit is a Z-covering, cf. Figure 7. If U = S1 − {−1}, then

exp−1(U) =
⊔

n∈Z

(n− 1
2

, n +
1
2
).

Example 3.7. The map S1 → S1, e2πiθ 7→ e2πinθ is an |n|-fold covering, for n ∈ Z− {0}.

Example 3.8. The map C→ C, z 7→ zn, is not a covering (why?). But

• the map C∗ → C∗, z 7→ zn, is an |n|-covering, where C∗ = C− {0}and n ∈ Z− {0}.
• the map exp : C→ C∗, z 7→ e2πiz is a Z-covering.

19



3 COVERING AND FIBRATION

Example 3.9 (From Hatcher). The figure-8

a•b

has two coverings as follows (the left is a 2-fold (or double) covering and the right is a 3-fold covering).

a•
b

b

a b•
b

b

a

a

a

The 4-regular tree is its universal cover (a covering which is simply connected), see Figure 8.

••••••••••••••

FIGURE 8. 4-regular tree

Example 3.10. Recall that the number of holes (genus) and number of boundary components determine the
homeomorphism type of a closed oriented topological surface. Denote by Sg,b the surface with genus g and
b boundary components.

• The surface S4,0 admits a 7-fold covering from S22,0, cf. Figure 9.
• In general, Sg,b admits a m-fold covering from Smg−m+1,mb.

Example 3.11. Denote by RPn the real projective space of dimension n, i.e.

RPn = Rn+1 − {0}/(x ∼ tx), ∀t ∈ R− {0}, x ∈ Rn+1 − {0}.

Let Sn be the n-sphere. Then there is a natural double cover Sn → RPn.

Example 3.12 (Branched double cover). Figure 10 shows a branched double cover of a disk

ι : Σn → D2,

branching at n points. Namely, when deleting those n (red) points (denoted by ∆) from both Σn and D2, we
obtain a 2-fold covering:

ι : Σn\∆
2:1−→ D2\∆

20



3 COVERING AND FIBRATION

FIGURE 9. A 7-covering

• • • • •ι

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

FIGURE 10. The Birman-Hilden double cover via the twisted surface

with a bijection ι : ∆ → ∆ on ∆. This can be used to show the homeomorphism in Figure ?? (it is a special
case of Figure 10 for n = 3. In general, it has genus g = b n

2 c − 1 with b = n− 2g boundary components.)

x

· · ·ι • ◦ ◦ ◦ ◦ ◦ ◦ ◦

β2

· · ·◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ι •

FIGURE 11. The normal view of the branched double cover of the punctured disk
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3 COVERING AND FIBRATION

Definition 3.13. Let p : E→ B, f : X → B. A lifting of f along p is a map F : X → E such that p ◦ F = f

E

p
��

X

F
??

f
// B

Lemma 3.14. Let p : E→ B be a covering. Let

D = {(x, x) ∈ E× E|x ∈ E}

Z = {(x, y) ∈ E× E|p(x) = p(y)}.

Then D ⊂ Z is both open and closed.

Proof. Exercise. �

Theorem 3.15 (Uniqueness of lifting). Let p : E → B be a covering. Let F0, F1 : X → E be two liftings of f .
Suppose X is connected and F0, F1 agree somewhere. Then F0 = F1.

Proof. Let D, Z be defined in Lemma 3.14. Consider the map F̃ = (F0, F1) : X → Z ⊂ E× E. By assumption,
we have F̃(X) ∩ D 6= ∅. Moreover, Lemma 3.14 implies that F̃−1(D) is both open and closed. Since X is
connected, we find F̃−1(D) = X which is equivalent to F0 = F1.

X
F̃

��

F0

��

F1

##

Z //

��

E

��
E // B

�

Fibration

Definition 3.16. A map p : E→ B is said to have the homotopy lifting property (HLP) with respect to X if
for any maps f̃ : X → E and F : X × I → B such that p ◦ f̃ = F|X×{0}, there exists a lifting F̃ of F along p
such that F̃|X×{0} = f̃ , i.e., the following diagram is commutative

X× {0}
f̃

//
� _

��

E

p

��
X× I

F
//

∃F̃

<<

B

Definition 3.17. A map p : E→ B is called a fibration (or Hurwitz fibration) if p has HLP for any space.

Theorem 3.18. A covering is a fibration .
22
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Proof. Let p : E→ B, f : X → B, f̃ : X → E, F : X× I → B be the data as in Definition 3.16. We only need to
show the existence of F̃x for some neighbourhood Nx of any given point x ∈ X.

E

p

��
Nx × I

F
//

F̃x

<<

B

In fact, for any two such neighbourhoods Nx and Ny with Nx ∩ Ny = N0 6= ∅, we have F̃x |N0 and F̃y |N0

agree at some point on f̃ |N0 and hence agree everywhere in N0 by the uniqueness of lifting (Theorem 3.15).
Thus {F̃x | x ∈ X} glue to give the required lifting F̃.

Next, we proceed to prove the existence. Since I is compact, given x ∈ X we can find a neighbourhood
Nx and a partition

0 = t0 < t1 < · · · < tm = 1

such that p has a trivialization over open sets Ui ⊃ F(Nx × [ti, ti+1]). Now we construct the lifting F̃x on
Nx × [t0, tk], for 1 ≤ k ≤ m, by induction on k.

• For k = 1, the lifting F̃x on Nx × [t0, t1] to one of the sheets of p−1(U1) is determined by f̃ |Nx×{0}:

p−1(U1)

p

��

=
⊔

α (̃U1)
α

Nx × [t0, t1] F
//

F̃x

88

U1

• Assume that we have constructed F̃x on Nx× [t0, tk] for some k. Now, the lifting of F̃x on Nx × [tk, tk+1]

to one of the sheets of p−1(Uk) is determined by f̃ |Nx×{tk}, which can be glued to the lifting on
Nx × [t0, tk] by the uniqueness of lifting again. This finishes the inductive step.

We obtain a lifting F̃x of F on NX × I as required. �

Corollary 3.19. Let p : E→ B be a covering. Then for any path γ : I → B and e ∈ E such that p(e) = γ(0), there
exists a unique path γ̃ : I → E which lifts γ and γ̃(0) = e.

Proof. Apply HLP to X = pt.

0
e //

� _

��

E

p

��
I

γ
//

γ̃

??

B

�

Corollary 3.20. Let p : E→ B be a covering. Then Π1(E)→ Π1(B) is a faithful functor. In particular, the induced
map π1(E, e)→ π1(B, p(e)) is injective.

Proof. Let γ̃i : I → E be two paths and [γ̃i] ∈ HomΠ1(E)(e1, e2). Let γi = p ◦ γ̃i. Suppose [γ1] = [γ2] and we
need to show that [γ̃1] = [γ̃2].
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Let F : γ1 ' γ2 be a homotopy. Consider the following commutative diagram with the lifting F̃ by HLP

I × {0}
γ̃1 //

� _

��

E

p

��
I × I

F
//

∃F̃

<<

B

Then the uniqueness of lifting implies F̃ |I×{1}= γ̃2. Thus, F̃ : γ̃1 ' γ̃2. �

Transport functor

Let p : E→ B be a covering. Let γ : I → B be a path in B from b1 to b2. It defines a map

Tγ : p−1(b1)→ p−1(b2)

e1 7→ γ̃(1)

where γ̃ is a lift of γ with initial condition γ̃(0) = e1.

•e0 • e1

γ

γ̃

•
b0

•
b1

FIGURE 12. The transportation

Assume [γ1] = [γ2] in B. HLP implies that Tγ1 = Tγ2 . We find a well-defined map:

T : HomΠ1(B)(b1, b2)→ HomSet(p−1(b1), p−1(b2))

[γ] 7→ T[γ]

This leads to the following definition (check the functor property!).

Definition 3.21. The following data

T : Π1(B)→ Set

b→ p−1(b)

[γ] 7→ T[γ].

define a functor, called the transport functor. In particular, we have a well-defined map

π1(B, b) = AutΠq(B)(b)→ AutSet(p−1(b)).

Example 3.22. Consider the covering map

Z→ R1 exp→ S1.

Consider the following path representing an element of π1(S1)

γn : I → S1, t→ exp(nt) = e2πint, n ∈ Z.
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Start with any point m ∈ Z in the fiber, γn lifts to a map to R1

γ̃n : I → R1, t 7→ m + nt.

We find T[γn ](m) = γ̃(1) = m + n. Therefore T[γn ] ∈ AutSet(Z) is

T[γn ] : Z→ Z, m 7→ m + n.

Proposition 3.23. Let p : E → B be a covering, E be path connected. Let e ∈ E, b = p(e) ∈ B. Then the action of
π1(B, b) on p−1(b) is transitive, whose stabilizer at e is π1(E, e). In other words,

p−1(b) ∼= π1(B, b)/π1(E, e)

as a coset space, i.e. we have the following short exact sequence

1→ π1(E, e)→ π1(B, b) ∂e−→ p−1(b)→ 1.

[γ] 7→ Tγ(e)

Proof. For any point e′ ∈ p−1(b), let γ̃ : e → e′ be a path in E and γ = p ◦ γ̃. Then e′ = ∂e(γ). This shows
the surjectivity of ∂e.

HLP implies that p∗ : π1(E, e)→ π1(B, b) is injective and we can view π1(E, e) as a subgroup of π1(B, b).
By definition, for γ̃ ∈ π1(E, e), we have ∂e([p ◦ γ̃]) = γ̃(1) = e, i.e. π1(E, e) ⊂ Stabe(π1(B, b)). On the other
hand, if Tγ(e) = e, then the lift γ̃ of γ is a loop, i.e. γ̃ ∈ π1(E, e). Therefore, π1(E, e) ⊃ Stabe(π1(B, b)). This
implies π1(E, e) = Stabe(π1(B, b)), which finishes the proof. �

Lifting Criterion

Theorem 3.24 (Lifting Criterion). Let p : E → B be a covering. Consider a continuous map f : X → B, where X
is path connected and locally path connected. Let e0 ∈ E, x0 ∈ X such that f (x0) = p(e0). Then there exists a lift F
of f with F(x0) = e0 if and only if

f∗(π1(X, x0)) ⊂ p∗(π1(E, e0)).

Proof. If such F exists, then

f∗(π1(X, x0)) = p∗
(

F∗(π1(X, x0))
)
⊂ p∗(π1(E, e0)).

Conversely, let

Ẽ = {(x, e) ∈ X× E| f (x) = p(e)} ⊂ X× E

and consider the following commutative diagram

Ẽ

p̃

��

// E

p

��
X

f
// B.

The projection p̃ is also a covering. We have an induced commutative diagram of functors

Π1(X)

T $$

// Π1(B)

T
��

Set
25
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which induces natural group homomorphisms

π1(X, x0)
f∗→ π1(B, b0)→ Aut(p−1(b0)) = Aut( p̃−1(x0)), b0 = f (x0) = p(e).

Let ẽ0 = (x0, e0) ∈ Ẽ. The condition f∗(π1(X, x0)) ⊂ p∗(π1(E, e0)) says that π1(X, x0) stabilizes ẽ0. By
Proposition 3.23, this implies we have a group isomorphism

p̃∗ : π1(Ẽ, ẽ0) ∼= π1(X, x0).

Since X is locally path connected, Ẽ is also locally path connected. Then path connected components and
connected components of Ẽ coincide. Let X̃ be the (path) connected component of Ẽ containing ẽ0, then
π1(Ẽ, ẽ) ∼= π1(X, x0) implies that p̃ : X̃ → X is a covering with fiber a single point, hence a homeomor-
phism. Its inverse defines a continuous map X → Ẽ whose composition with Ẽ→ E gives F.

Ẽ

p̃

��

// E

p

��
X

f
//

UU

B.

�

G-principal covering

Definition 3.25. Let G be a discrete group. A continuous action G× X → X is called properly discontinu-
ous if for any x ∈ X, there exists an open neighborhood U of x such that

g(U) ∩U = ∅, ∀g 6= 1 ∈ G.

We define the orbit space X/G = X/ ∼ where x ∼ g(x) for any x ∈ X, g ∈ G.

Proposition 3.26. Assume G acts properly discontinuously on X, then the quotient map X → X/G is a covering.

Proof. For any x ∈ X, let U be the neighbourhood satisfying g(U) ∩U = ∅, ∀g 6= 1 ∈ G. Then

p−1 (p(U)) =
⊔

g∈G
gU

is a disjoint union of open sets. Thus, p is locally trivial with discrete fiber G, hence a covering. �

Definition 3.27. A left (right) G-principal covering is a covering p : E → B with a left (right) properly
discontinuous G-action on E over B

E
g

//

p ��

E

p��
B

, ∀g ∈ G

such that the induced map E/G → B is a homeomorphism.

Example 3.28. exp : R1 → S1 is a Z-principal covering for the action n : t→ t + n, ∀n ∈ Z.

Example 3.29. Sn → RPn ∼= Sn/Z2 is a Z2-principal covering.

Proposition 3.30. Let p : E→ B be a G-principal covering. Then the transport is G-equivariant, i.e.,

T[γ] ◦ g = g ◦ T[γ], ∀g ∈ G, γ a path in B.
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Proof. Let γ : b0 → b1 and e0 ∈ p−1(b0). Then γ̃ : e0 → e1 = T[γ](e0) for some e1 ∈ p−1(b1). If we apply the
transformation g to the path γ̃, we find another lift of γ but with endpoints g(e0) and g(e1). Therefore

T[γ](g(e0)) = g(e1).

It follows that T[γ](g(e0)) = g(e1) = g(T[γ](e0)). This proves the proposition.

•e0 • e1

γ

γ̃

•
b0

•
b1

g(γ̃)
•g(e0) • g(e1)

FIGURE 13. Transport commutes with G-action

�

Theorem 3.31. Let p : E→ B be a G-principal covering, E path connected, e ∈ E, b = p(e). Then we have an exact
sequence of groups

1→ π1(E, e)→ π1(B, b)→ G → 1.

In other words, π1(E, e) is a normal subgroup of π1(B, b) and G = π1(B, b)/π1(E, e).

Proof. Let F = p−1(b). The previous proposition implies that π1(B, b)-action and G-action on F commute.
It induces a π1(B, b)× G-action on F. Consider its stabilizer at e and two projections

Stabe(π1(B, b)× G)
pr1

vv

pr2

''
π1(B, b) G

pr1 is an isomorphism and pr2 is an epimorphism with ker(pr2) = Stabe(π1(B, b)) = π1(E, e). �

Apply this theorem to the covering exp : R1 → S1, we find a group isomorphism

deg : π1(S1)
∼=−→ Z

which is called the degree map. An example of degree n map is

S1 → S1, eiθ 7→ einθ .

Applications

Definition 3.32. Let i : A ⊂ X be an inclusion. A continuous map r : X → A is called a retraction if
r ◦ i = 1A. It is called a deformation retraction if furthermore we have a homotopy i ◦ r ' 1X rel A. We say
A is a (deformation) retract of X if such a (deformation) retraction exists.

Proposition 3.33. If i : A ⊂ X is a retract, then r∗ : π1(A)→ π1(X) is injective.
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Corollary 3.34. Let D2 be the unit disk in R2. Then its boundary S1 is not a retract of D2.

Proof. Since D2 is contractible, we have π1(D2) = 1. But π1(S1) = Z. Then the corollary follows from the
proposition above. �

Theorem 3.35 (Brouwer fixed point Theorem). Let f : D2 → D2. Then there exists x ∈ D2 such that f (x) = x.

Proof. Assume f has no fixed point. Let lx be the ray starting from f (x) pointing toward x. Then

D2 → S1, x 7→ lx ∩ ∂D2

is a retraction of ∂D2 = S1 ⊂ D2. Contradiction. �

Theorem 3.36 (Fundamental Theorem of Algebra). Let f (x) = xn + c1xn−1 + · · ·+ cn be a polynomial with
ci ∈ C, n > 0. Then there exists a ∈ C such that f (a) = 0.

Proof. Assume f has no root in C. Define a homotopy of maps from S1 to S1

F : S1 × I → S1, F(eiθ , t) =
f (tan(πt

2 )eiθ)∣∣ f (tan(πt
2 )eiθ)

∣∣ .
On one hand, deg(F|S1×0) = 0. On the other hand, deg(F|S1×1) = n. But they are homotopic hence
representing the same element in π1(S1). Contradiction. �

Proposition 3.37 (Antipode). Let f : S1 → S1 be an antipode-preserving map, i.e. f (−x) = f (−x). Then deg( f )
is odd. In particular, f is NOT null homotopic.

Proof. Let σ : S1 → S1 be the antipode map, with σ(x) = −x. Then deg(σ) = −1. Let

F : R1 → R1

F(x + 1) = F(x) + deg( f ),

be a lifting of f . Since f is antipode-preserving, F(x + 1/2) = F(x) + m for m ∈ Z + 1/2. So F(x + 1) =

F(x) + 2m which implies deg( f ) = 2m is odd. �

Theorem 3.38 (Borsuk-Ulam). Let f : S2 → R2. Then there exists x ∈ S2 such that f (x) = f (−x).

Proof. Assume f (x) 6= f (−x), ∀x ∈ S2. Define

ρ : S2 → S1, ρ(x) =
f (x)− f (−x)
| f (x)− f (−x)| .

Let D2 be the upper hemi-sphere of S2. It defines a homotopy between constant map and ρ|∂D2 : S1 → S1,
hence deg(ρ|∂D2) = 0. On the other hand, ρ|∂D2 is antipode-preserving: ρ|∂D2(−x) = −ρ|∂D2(x), hence
deg(ρ|∂D2) is odd. Contradiction. �

Corollary 3.39 (Ham Sandwich Theorem). Let A1, A2 be two bounded regions of positive areas in R2. Then there
exists a line which cuts each Ai into half of equal areas.
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3 COVERING AND FIBRATION

z = 1

u

Pu

Proof. Let A1, A2 ⊂ R2 × {1} ⊂ R3.

Given u ∈ S2, let Pu be the plane passing the origin and perpendicular to the unit vector u. Let Ai(u) =
{p ∈ Ai|p · u ≤ 0}. Define the map

f : S2 → R2, fi(u) = Area(Ai(u)).

By Borsuk-Ulam, ∃u such that f (u) = f (−u). The intersection R2 × {1} ∩ Pu gives the required line since

f (u) = f (−u)⇐⇒ fi(u) =
1
2
(Ai).

�
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4 CLASSIFICATION OF COVERING

Definition 4.1. The universal cover of B is a covering map p : E→ B with E simply connected.

The universal cover is unique (if exists) up to homeomorphism. This follows from the lifting criterion
and the unique lifting property of covering maps. We left it as an exercise to readers.

Definition 4.2. A space is semi-locally simply connected if for any x0 ∈ X, there is a neighbourhood U0

such that the image of the map i∗ : π1(U0, x0)→ π1(X, x0) is trivial.

We recall the following theorem from point-set topology.

Theorem 4.3 (Existence of the universal cover). Assume B is path connected and locally path connected. Then
universal cover of B exists if and only if B is semi-locally simply connected.

Definition 4.4. We define the category Cov(B) of coverings of B where

• an object is a covering map p : E→ B;
• a morphism between two coverings p1 : E1 → B and p2 : E2 → B is a map f : E1 → E2 such that

the following diagram is commutative

E1
f

//

p1 ��

E2

p2��
B

.

Definition 4.5. Let B be connected. We define Cov0(B) ⊂ Cov(B) to be the subcategory whose objects
consist of coverings of B which are connected spaces.

Proposition 4.6. Let B be connected and locally path connected. Then any morphism in Cov0(B) is a covering map.

Proof. Exercise. �

Definition 4.7. We define the category G -Set, where

• an object is a set S with G-action and
• morphisms are G-equivariant set maps, i.e. f : S1 → S2 such that f ◦ g = g ◦ f , for any g ∈ G.

Given a covering p : E→ B, b ∈ B, the transport functor implies that

p−1(b) ∈ π1(B, b) -Set.

Lemma 4.8. Let B be path connected. Then π1(B, b) acts transitively on p−1(b) if and only if E is path connected.

Proof. The ”if” part follows from Proposition 3.23. We prove the ”only if” part.

Let us fix a point e0 ∈ p−1(b). Assume π1(B, b) acts transitively on p−1(b). This implies that any point
in p−1(b) is connected to e0 by a path. Given any point e ∈ E, let γ be a path in B that connects p(e) to b.
The transport functor T[γ] gives a path connecting e to some point in p−1(b). This further implies that e is
path connected to e0. This proves the ”only if” part.

�

Corollary 4.9. Let B be path connected, p : E→ B be a covering. Then there is a one-to-one correspondence between
path connected components of E and π1(B, b)-orbits in p−1(b).
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•e0 •

γ
•
b

•
p(e)

T[γ]

• • e

FIGURE 14. Transitivity v.s. path connectedness

Example 4.10. Let p : B̃ → B be the universal covering. By Proposition 3.23, the fiber p−1(b) can be
identified with π1(B, b) itself.

Proposition 4.11. Assume B is path connected and locally path connected. Let p1, p2 ∈ Cov(B). Then

HomCov(B)(p1, p2) ∼= Homπ1(B,b) -Set(p−1
1 (b), p−1

2 (b))

for any b ∈ B.

Proof. Let f ∈ HomCov(B)(p1, p2), i.e.

E1
f

//

p1 ��

E2

p2��
B

.

It induces a map by restricting f to the fiber p−1(b)

fb : p−1
1 (b)→ p−1

2 (b).

By the same argument as in Proposition 3.30, we find fb is π1(B, b)-equivariant. Thus we obtain a map

Φ : HomCov(B)(p1, p2)→ Homπ1(B,b) -Set(p−1
1 (b), p−1

2 (b))

f → fb

The injectivity of Φ comes from the uniqueness of the lifting.

To prove surjectivity, we can assume E1 is path connected, and π1(B, b) acts transitively on p−1
1 (b) (see

the Corollary above). Given fb : p−1
1 (b) → p−1

2 (b), let us fix two points ei ∈ p−1
i (b) such that f (e1) = e2.

The π1(B, b)-equivariance of fb gives rise to the homomorphism

Stabe1(π1(B, b)) −→ Stabe2(π1(B, b))
= π1(E1, e1) = π1(E2, e2).

By Lifting Criterion (Theorem 3.24), we obtain a morphism f : E1 → E2 as required. �

Theorem 4.12. Assume B is path connected, locally path connected and semi-locally simply connected. b ∈ B. Then
there exists an equivalence of categories

Cov(B) ' π1(B, b) -Set.
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4 CLASSIFICATION OF COVERING

Proof. Let us denote π1 = π1(B, b). Let p̃ : B̃→ B be a fixed universal cover of B and b̃ ∈ π−1(b) chosen.

We will define the following functors

Cov(B)
F --

π1 -Set.
G
mm

Let p : E→ B be a covering, we define

F(p) := p−1(b).

Let S ∈ π1 -Set, we define

G(S) := B̃×π1 S = B̃× S/ ∼,

where (e · g, s) ∼ (e, g · s) for any e ∈ B̃, s ∈ S, g ∈ π1. Note that here e · g represents the (right) π1-action
on B̃. Then we have natural isomorphisms

F ◦ G
η
' 1, G ◦ F

τ' 1.

Here η is the natural isomorphism

ηS ∈ Homπ1 -Set(F ◦ G(S), S), ηS(e, s) = g · s if e = b̃ · g.

τ is the natural isomorphism

τp ∈ HomCov(B)(p′, p) ∼= Homπ1 -Set(p−1(b), p−1(b)), p′ = G ◦ F(p) : B̃×π1 p−1(b)→ B,

which is determined by the identity map in Homπ1 -Set(p−1(b), p−1(b)). �

Definition 4.13. Let B be path connected and p : E → B be a connected covering. A deck transformation
(or covering transformation) of p is a homeomorphism f : E→ E such that p ◦ f = p.

E
f

//

p ��

E

p��
B

Let Aut(p) denote the group of deck transformations.

Note that Aut(p) acts freely on E by the Uniqueness of Lifting.

Proposition 4.14. Let B be path connected and p : E → B be a connected covering. Then Aut(p) acts properly
discontinuously on E.

Proof. Exercise. �

Corollary 4.15. Assume B is path connected, locally path connected. Let p : E → B be a connected covering,
e ∈ E, b = p(e) ∈ B, G = π1(B, b), H = π1(E, e). Then

Aut(p) ∼= NG(H)/H

where

NG(H) : = {r ∈ G | rHr−1 = H}

is the normalizer of H in G.
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5 CLASSIFICATION OF COVERING

Proof. By the above proposition,

Aut(p) ∼= HomG -Set(G/H, G/H) = NG(H)/H.

�

Definition 4.16. We define the orbit category Orb(G):

• objects consist of (left) coset G/H, where H is a subgroup of G;
• morphisms are G-equivariant maps: G/H1 → G/H2.

Note G/H1 and G/H2 are isomorphic in Orb(G) if and only if H1 and H2 are conjugate subgroups of G.

If we restrict Theorem 4.12 to connected coverings, we find

Theorem 4.17. Assume B is path connected, locally path connected and semi-locally simply connected. b ∈ B. Then
there exists an equivalence of categories

Cov0(B) ' Orb(π1(B, b)).

The universal cover B̃→ B corresponds to the orbit π1(B, b). For the orbit π1(B, b)/H, it corresponds to

E = B̃/H → B.

This can be illustrated by the following correspondence

π1(B, b)

##

// π̃1(B, b)/H

zz
1

⇐⇒ B̃
f

//

��

B̃/H

}}
B

A more intrinsic formulation is as follows. Given a covering p : E→ B, we obtain a transport functor

Tp : Π1(B)→ Set .

Given a commutative diagram

E1
f

//

p1 ��

E2

p2��
B

we find a natural transformation

τ : Tp1 =⇒ Tp2 , τ = { f : p−1
1 (b)→ p−1

2 (b)|b ∈ B}.

The above structure can be summarized by a functor

T : Cov(B)→ Fun(Π1(B), Set) .

Theorem 4.18. Assume B is path connected, locally path connected and semi-locally simply connected. Then

T : Cov(B)→ Fun(Π1(B), Set)

is an equivalence of categories.
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5 LIMIT AND COLIMIT

Many constructions in algebraic topology are described by their universal properties. There are two
important ways to define new objects of such types, called the limit and colimit, which are dual to each
other. In this section, we give a brief discussion of these two notions.

Let I be a small category (i.e. objects form a set). Let C be a category. Recall that we have a functor
category (Definition 1.27)

Fun(I , C),
where objects are functors from I to C, and morphisms are natural transformations. We also write

CI := Fun(I , C).

Definition 5.1. We define the diagonal (or constant) functor

∆ : C → Fun(I , C),

which assigns X ∈ C to the functor ∆(X) : I → C that sends all objects in I to X and all morphisms to 1X .

Diagram

Let I be a diagram, with vertices and arrows. We can define a category still denoted by I

• Obj(I) = vertices in the diagram I
• morphisms are composites of all given arrows as well as additional ”identity arrows” that compose

like identity maps.

Example 5.2. The following diagram
• ◦

?

defines a category with three objects •, ◦, ?. There is only one morphism from • to ◦, one from ◦ to ?, and
one from • to ? which is the composite of the previous two.

Given an object A ∈ C, the constant functor ∆(A) : I → C can be represented by the following data

A A

A

1A

1A

Example 5.3. The following diagram
• ◦

?

defines a category with three objects •, ◦, ?. There is only one morphism from • to ◦ and one from ◦ to ?.
There are two morphisms from • to ?, one of them is the composite of the previous two morphisms, and
the other one is represented by the arrow • → ?.

Example 5.4. The following diagram
• ◦

defines a category with two objects •, ◦. Morphisms from • to • contains the identity 1•, the composition of
• → ◦ and ◦ → • and so on.
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5 LIMIT AND COLIMIT

Given a diagram I , a functor F : I → C is determined by assigning vertices and arrows the correspond-
ing objects and morphisms in C. For example, the following data

X Y Z
f g

, X, Y, Z ∈ C

define a functor from • → ◦ ← ? to C. Such a data will be also called a I-shaped diagram in C.

Limit

Definition 5.5 (Limit). Let F : I → C. A limit for F is an object P in C together with a natural transformation

τ : ∆(P)⇒ F

such that for every object Q of C and every natural transformation η : ∆(Q)⇒ F, there exists a unique map
f : Q→ P such that τ ◦ ∆( f ) = η. In other words, the following diagram is commutative.

∆(Q) ∆(P)

F

∃!∆( f )

η
τ .

For example, consider the following I-shaped diagram in C which represents a functor F : I → C

Y

X Z

.

Then its limit is an object P ∈ C that fits into the commutative diagram

P Y

X Z

.

Moreover for any other object Q fitting into the same commutative diagram, there exists a unique f : Q→ A
to making the following diagram commutative

Q

P Y

X Z

∃!

.

Proposition 5.6. Let F : I → C and P1, P2 be two limits of F with natural transformations τi : ∆(Ai) ⇒ F. Then
there exists a unique isomorphism P1 → P2 in C which makes the following diagram commutative

∆(P1) ∆(P2)

F
τ1 τ2

.

The above proposition says that if the limit of F exists, then it is unique up to a canonical isomorphism.

Definition 5.7. We denote the limit of F : I → C by lim F (if exists).
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5 LIMIT AND COLIMIT

The universal property of the limit gives the adjunction

HomFun(I ,C)(∆(X), F) = HomC(X, lim F).

This immediately leads to the following theorem.

Theorem 5.8. Let C be a category. Then the following are equivalent

(1) Every F : I → C has a limit
(2) The constant functor ∆ : C → Fun(I , C) has a right adjoint.

∆ : C Fun(I , C) : lim .

In this case, the right adjoint of the constant functor is the limit.

Example 5.9 (Pullback). The limit of the following diagram X → Y ← Z gives

P Y

X Z

g

f

,

which is called the pullback.

In the category Set, the pull-back exists and is given by the subset of X×Y

P = {(x, y) ∈ X×Y| f (x) = g(y)} ⊂ X×Y.

Example 5.10 (Tower and inverse limit). We consider the following category N:

• Objects of N are positive integers.
• Given m, n ∈N, the morphism set HomN(m, n) is empty if m > n and is a single point if m ≤ n.

Let Nop be the opposite of N. A functor F : Nop → C is represented by the tower diagram

· · · Xn+1 Xn · · · X2 X1 .

The limit of tower diagram is also called the inverse limit of the tower and written as lim←−Xi.

Q

lim←−Xi

· · · Xn+1 Xn · · · X2 X1

∃!

.

Theorem 5.11. Let L : C D : R be adjoint functors. Assume the limit of F : I → D exists. Then the limit
of R ◦ F : I → C also exists and is given by

lim(R ◦ F) = R(lim F).

In other words, right adjoint functors preserve limit.

Proof. Let A ∈ C. Assume we have a natural transformation

τ : ∆(A)⇒ R ◦ F.

By adjunction, this is equivalent to a natural transformation ∆(L(A))⇒ F.
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5 LIMIT AND COLIMIT

By the universal property of limit, there exists a unique map L(A)→ lim F factorizing ∆(L(A))⇒ F

∆(L(A))⇒ lim F ⇒ F.

By adjunction again, this is equivalent to natural transformations

∆(A)⇒ R(lim F)⇒ R ◦ F.

This implies that R(lim F) is the limit of R ◦ F. �

Remark 5.12. A functor is called continuous if it preserves all limits. This theorem says if a functor has a left
adjoint, then it is continuous. Under certain conditions, the reverse is also true (Adjoint Functor Theorem).

Corollary 5.13. The forgetful functor Forget : Top→ Set preserves limit.

Proof. Forget : Top→ Set has a left adjoint

Discrete : Set Top : Forget ,

where Discrete associates a set X with discrete topology. �

Example 5.14. Consider the following diagram in Top

Y

X Z

.

We would like to understand the pull-back P of the above diagram in Top. By Example 5.9 and Corollary
5.13, we know that the underlying set for P (if exists) is

Forget(P) = {(x, y) ∈ X×Y| f (x) = g(y)} ⊂ X×Y.

It is not hard to see that if we assign P the subspace topology of the topological product X × Y, then P is
indeed the pull-back in Top. In particular, pull-back exists in Top. Fibrations behave well under pull-back.

Proposition 5.15. Let p : Y → Z be a fibration, and f : X → Z be continuous. Consider the pull-back diagram

Q Y

X Z

q
p

f

.

Then q : Q→ X is also a fibration. In other words, the pull-back of a fibration is a fibration.

Colimit

The notion of colimit is dual to limit.

Definition 5.16 (Colimit). Let F : I → C. A colimit for F is an object P in C together with a natural
transformation

τ : F ⇒ ∆(P)
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such that for every object Q of C and every natural transformation η : F ⇒ ∆(Q), there exists a unique map
f : P→ Q such that ∆( f ) ◦ τ = η. In other words, the following diagram is commutative

F ∆(P)

∆(Q)

τ

η ∃!∆( f ) .

The colimit, if exists, is unique up to a unique isomorphism, and will be denoted by colim F.

The following theorems are dual to the limit case as well and can be proved dually.

Theorem 5.17. Let C be a category. Then the following are equivalent

(1) Every F : I → C has a limit
(2) The constant functor ∆ : C → Fun(I , C) has a left adjoint.

colim : Fun(I , C) C : ∆

In this case, the left adjoint of the constant functor is the colimit.

Theorem 5.18. Let L : C D : R be adjoint functors. Assume the colimit of F : I → C exists. Then the
colimit of L ◦ F : I → D also exists and is given by

colim(L ◦ F) = L(colim F).

In other words, left adjoint functors preserve colimit.

Remark 5.19. A functor is called co-continuous if it preserves all colimits. This theorem says if a functor has
a right adjoint, then it is co-continuous. Under certain conditions, the reverse is also true (Adjoint Functor
Theorem).

Corollary 5.20. The forgetful functor Forget : Top→ Set preserves colimit.

Proof. Forget : Top→ Set has a right adjoint

Forget : Top Set : Triv ,

where Triv associates a set X with trivial topology (only open subsets are ∅ and X). �

Example 5.21 (Pushout). The colimit of the following diagram X ← Y → Z gives

Y Z

X P

.

This colimit is called the pushout. This is a dual notion to pullback. It has the following universal property

Y Z

X P

Q

∃!

.

Here are some examples.
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• Let j1 : X0 → X1, j2 : X0 → X2 in Top. Their pushout is the quotient of the disjoint union X1 ä X2

by identifying j1(y) ∼ j2(y), y ∈ X0. It glues X1, X2 along X0 using j1, j2. For instance:

=⇒

X

X1 X2X1 X2X0 X0

• Let ρ1 : H → G1, ρ2 : H → G2 be two morphisms in Group, then their pushout is

(G1 ∗ G2)/N,

where G1 ∗ G2 is the free product and N is the normal subgroup generated by ρ1(h)ρ−1
2 (h), h ∈ H.

Example 5.22 (Telescope and direct limit). A functor F : N→ C is represented by the telescope diagram

X1 X2 · · · Xn Xn+1 · · · .

The colimit of telescope diagram is also called the direct limit of the telescope and written as lim−→Xi.

X1 X2 · · · Xn Xn+1 · · ·

lim−→Xi

Q

∃!

.

Product

Definition 5.23. Let C be a category, {Aα}α∈I be a set of objects in C. Their product is an object A in C
together with πα : A → Aα satisfying the following universal property: for any X in C and fα : X → Aα,
there exists a unique morphism f : X → A such that the following diagram commutes

X
∃! f
//

fα   

A

πα

��
Aα

.

For product of two objects, we have the following diagram

A×A2

π1
||

π2

""
A1 A2

X

f1

bb
u2

<<
∃! f

OO
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5 LIMIT AND COLIMIT

The product is a limit. In fact, let us equip the index set I with the category structure such that it has only
identity morphisms. Then the data {Aα}α∈I is the same as a functor F : I → C. Their product is precisely
lim F. In particular, the product is unique up to isomorphism if it exists. We denote it by

∏
α∈I

Aα.

A useful consequence is that the product is preserved under right adjoint functors (like forgetful functors).

Example 5.24.

• Let Sα ∈ Set. ∏
α

Sα = {(sα)|sα ∈ Sα} is the Cartesian product.

• Let Xα ∈ Top. Then ∏
α

Xα is the Cartesian product with induced product topology. Namely, we

have X
f−→ ∏

α
Xα is continuous if and only if {X fα−→ Xα} are continuous for any α.

• Let Gα ∈ Group. Then ∏
α

Gα is the Cartesian product with induced group structure, i.e.

∏
α

Gα = {(gα) | gα ∈ Gα}

with (gα) · (g′α) = (gα · g′α).

Coproduct

Definition 5.25. Let C be a category, {Aα}α∈I be a set of objects in C. Their coproduct is an object A in C
together with iα : Aα → A satisfying the following universal property: for any X in C and fα : Aα → X,
there exists a unique morphism f : A→ X such that the following diagram commutes

X A
∃! f
oo

Aα

πα

OO

fα

``

The coproduct is a colimit. As in the discussion of product, the data {Aα}α∈I defines a functor F : I → C.
Their coproduct is precisely colim F, which is unique up to isomorphism if it exists. We denote it by

ä
α∈I

Aα.

A useful consequence is that the coproduct is preserved under left adjoint functors (like free constructions).

Example 5.26.

• Let Sα ∈ Set. ä
α

Sα = {(sα)|sα ∈ Sα} is the disjoint union of sets.

• Let Xα ∈ Top. Then ä
α

Xα is the disjoint union of topological spaces. Clearly, continuous maps

{Xα
fα−→ Y} uniquely extends to ä

α
Xα → Y.

• Let Gα ∈ Group. Then ä
α

Gα is the free product of groups. More precisely, we have

ä
α

Gα : = {word of finite length: x1x2 · · · xn | xi ∈ Gαi}/ ∼,

where

x1 · · · xixi+1 · · · xn ∼ x1 · · · (xi · xi+1) · · · xn
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if xi, xi+1 ∈ Gα and (xi · xi+1) is the group production in Gα. The group structure in ä
α

Gα is

(x1 · · · xn) · (y1 · · · ym) : = x1 · · · xny1 · · · ym.

Given group homomorphisms Gα
fα−→ H, it uniquely determines the group homomorphism

f : ä
α

Gα → H

xq · · · xn 7→ fα1(x1) · · · fαn(xn).

This is precisely the coproduct property. When there are only finitely many Gα, we will write

ä
α

Gα = : G1 ? G2 ? · · · ? Gn.

Wedge and smash product

Definition 5.27. We define the category Top? of pointed topological space where

• an object (X, x0) is a topological space X with a based point x0 ∈ X
• morphisms are based continuous maps that map based point to based point.

Given a space X, we can define a pointed space X+ by adding an extra point

X+ = X ä ?, with basepoint ? .

This defines a functor

()+ : Top→ Top? .

On the other hand, we have a forgetful functor by forgetting the base point

Forget : Top? → Top .

They form an adjoint pair

()+ : Top Top? : Forget

This implies that the limit in Top? will be the same as the limit in Top. In particular, the product of pointed
spaces {(Xi, xi)} in Top? is the topological product

∏
i

Xi, with base point {xi}.

In Top?, the coproduct of two pointed spaces X, Y is the wedge product ∨. Specifically,

X ∨Y = X ä Y/ ∼

is the quotient of the disjoint union of X and Y by identifying the base points x0 ∈ X and y0 ∈ Y. The
identified based point is the new based point of X ∨Y. In general, we have∨

i∈I
Xi = ä

i∈I
Xi/ ∼

where ∼ again identifies all based points in Xi’s. In other words,
∨

is the joining of spaces at a single point.

• ∨ =• •

Example 5.28. The Figure-8 in Example 3.9 can be identified with S1 ∨ S1.
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5 LIMIT AND COLIMIT

In Top?, there is another operation, called smash product ∧, which will have adjunction property and
play an important role in homotopy theory. Specifically,

X ∧Y = X×Y/ ∼

is the quotient of the product space X × Y under the identifications (x, y0) ∼ (x0, y) for all x ∈ X, y ∈ Y.
The identified point is the new based point of X ∧Y. Note that we can write it as the quotient

X ∧Y = X×Y/X ∨Y.

• × =•
•

• ∧ =•
•

/ • = •

FIGURE 15. Smash product of circles

Example 5.29. There is a natural homeomorphism

S1 ∧ Sn ∼= Sn+1.

This implies that Sn ∧ Sm ∼= Sn+m. For instance, see Figure 15 for n = 1 case. In this case, the result, i.e.
S2, can be also realized by cutting the green/purple circles on the torus (where we get a square) and gluing
them (the boundary of the square) into one point.

Complete and cocomplete

Definition 5.30. A category C is called complete (cocomplete) if for any F ∈ Fun(I , C) with I a small
category, the limit lim F (colim F) exists.

Example 5.31. Set, Group, Ab, Vect, Top are complete and cocomplete.

For example, in Set, the limit of F : I → Set is given by

lim F =

{
(xi)i∈I ∈∏

i∈I
F(i)

∣∣∣∣∣ xj = F( f )(xi) for any i
f→ j

}
⊂∏

i∈I
F(i)

which is a subset of ∏
i∈I

F(i). The colimit is given by

colim F = ä
i∈I

F(i)

/{
xi ∼ F( f )(xi) for any i

f→ j, xi ∈ F(i)
}

which is a quotient of äi∈I F(i).

For another example, we consider Top. Since the forgetful functor Top → Set has both a left adjoint
and a right adjoint, it preserves both limits and colimits. Given F : I → Top, its limit lim F has the same
underlying set as that in Set above, but equipped with the induced topology from product and subspace.
Similarly, the colimit colim F is the quotient of disjoint unions of F(i) with the induced quotient topology.
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5 LIMIT AND COLIMIT

Initial and terminal object

Definition 5.32. An initial/universal object of a category C is an object ? such that for every object X in C,
there exists precisely one morphism ? → X. Dually, a terminal/final object ? satisfies that for every object
X there exists precisely one morphism X → ?. If an object is both initial and terminal, it is called a zero
object or null object.

The defining universal property implies that the initial object and he terminal object are unique up to
isomorphism if they exist.

Example 5.33. The emptyset ∅ is the initial object in Set, and the set with a single point is the terminal
object in Set. The same is true for Top.

The limit of a functor F : I → C can be viewed as a terminal object as follows. We define a category CF

• an object of CF is an object A ∈ C together with a natural transformation

∆(A)⇒ F

• a morphism in CF is a morphism f : A→ B in C such that the following diagram is commutative

∆(A) ∆(P)

F

∆( f )

Then lim F is the terminal object in CF. A dual construction says colim F can be viewed as an initial object.
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6 SEIFERT-VAN KAMPEN THEOREM

Theorem 6.1 (Seifert-van Kampen Theorem, Groupoid version). Let X = U ∪ V where U, V ⊂ X are open.
Then the following diagram

Π(U ∩V) //

��

Π(U)

��
Π(V) // Π(X)

is a pushout in the category Groupoid.

Proof. Let C be a groupoid fitting into the commutative diagram

Π(U ∩V) //

��

Π(U)

��
Π(V) // C

and we need to show that

Π(U ∩V) //

��

Π(U)

��

��

Π(V)

))

// Π(X)

∃!F

!!
C

Uniqueness: Let γ : I → X be a path in X with xt = γ(t). We subdivide I (by its compactness) into

0 = t0 < t1 < · · · < tm = 1

such that γi := γ(ti−1, ti) lies entirely in U or V. Then

F([γ]) = F([γm]) · · · F([γ1])

is determined uniquely in C as each term is.
Existence: Given a path γ, we can define F([γ]) using a subdivision of I (or γ), where the result does

not depend on the choice of the subdivision. We need to show that this is well-defined on homotopy
class. This follows from a refined double subdivision of I × I, as shown in the picture below. Each
square represents a homotopy lying entirely in either U or V and combining them together gives
the required homotopy.

F(γ1) ' F(γ1 ? ix0) ' F(ix1 ? γ2) ' F(γ2)

�
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6 SEIFERT-VAN KAMPEN THEOREM

γ2

γ1

ix0 ix1

⇒

Theorem 6.2 (Seifert-van Kampen Theorem, Group version). Let X = U ∪ V where U, V ⊂ X are open and
U, V, U ∩V are path connected. Let x0 ∈ U ∩V. Then the following diagram

π1(U ∩V, x0) //

��

π1(U, x0)

��
π1(V, x0) // π1(X, x0)

is a pushout in the category Group.

Proof. Denote by G the groupoid with one object that comes from a group G.

For each x ∈ X, we fix a choice of [γx] ∈ Hom(x0, x) such that γx lies entirely in U when x ∈ U and γx

lies entirely in V when x ∈ V. Note this implies that γx lies entirely in U ∩V when x ∈ U ∩V. Such choice
can be achieved because U, V, U ∩V are all path connected. Consider the following functors

Π1(U)→ π1(U, x0)

Π1(V)→ π1(V, x0)

Π1(U ∩V)→ π1(U ∩V, x0)

γ 7→ γ−1
x2

? γ ? γx1 , γ ∈ Hom(x1, x2).

These functors are all retracts in Groupoid, in other words, the compositions

π1(U, x0)→ Π1(U)→ π1(U, x0)

π1(V, x0)→ Π1(V)→ π1(V, x0)

π1(U ∩V, x0)→ Π1(U ∩V)→ π1(U ∩V, x0)

are all identity functors.

Suppose there is a group G that fits into the following commutative diagram:

Π1(U)

��

Π1(U ∩V)

��

oo // Π1(V)

��
π1(U, x0)

&&

π1(U ∩V, x0)

��

oo // π1(V, x0)

xx
G
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6 SEIFERT-VAN KAMPEN THEOREM

By Theorem 6.1, we have the following morphism F

Π1(U)

�� %%

Π1(U ∩V)oo // Π1(V)

��yy
π1(U, x0)

%%

Π1(X)

∃!F

��

π1(V, x0)

yy
G

Thus, we obtain a morphism

π1(X, x0) ↪→ Π1(X)
F−→ G

which fits into a commutative diagram

π1(U ∩V, x0) //

��

π1(U, x0)

��

��

π1(V, x0) //

**

π1(X, x0)

""
G

Since Group is a full subcategory of Groupoid, the theorem follows. �

We also have the relative version.

Definition 6.3. Let A ⊂ X, we define Π1(X, A) be the full subcategory of Π1(X) consists of objects in A.

XA ••

γ

For instance, when A = {x0}, we have

Π1(X, x0) = π1(X, x0).

Theorem 6.4. Let X = U ∪V, U, V be open and A ⊂ X intersects each path connected components of U, V, U ∩V.
Then we have a pushout

Π1(U ∩V, A) //

��

Π1(U, A)

��
Π1(V, A) // Π1(X, A).
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6 SEIFERT-VAN KAMPEN THEOREM

Example 6.5. For the Figure-8 in Example 3.9, which is S1 ∨ S1.

•S1 ∨ S1 =

It can be decomposed into U, V as follows

•U = •V =

Since U, V are homotopic to S1, and U ∩V is homotopic to a point, Seifert-van Kampen Theorem implies

π1(S1 ∨ S1) = π1(S1) ? π1(S1) = Z ? Z.

In general, we have

π1(
n∨

i=1

S1) = Z ? · · · ? Z︸ ︷︷ ︸
n

.

Example 6.6. Consider the 2-sphere S2 = D1 ∪ D2 where Di
∼= D2 are open disks and D0 = D1 ∩ D2 is an

annulus. Here Di is an open neighbourhood of Xi for i = 0, 1, 2.

S2

X1 X2X1 X2X0 X0

Since π1(D1) = π1(D2) = 1, π1(D0) = π1(S1) = Z, we deduce that

π1(S2) = (1 ? 1)/Z = 1.

Similar argument shows that
π1(Sn) = 1, n ≥ 2.

Example 6.7. Let us identiy X = S1 with the unit circle in R2. Consider

U = {(x, y) ∈ S1 | y > −1/2}, V = {(x, y) ∈ S1 | y < 1/2}

and A = {(±1, 0)}. Then we obtain a pushout by Theorem 6.4

Π1(U ∩V, A) //

��

Π1(U, A)

��
Π1(V, A) // Π1(S1, A).

This implies that the groupoid Π1(S1, A) contains two objects a1 = (1, 0), a2 = (−1, 0) with morphisms

HomΠ1(S1,A)(a1, a1) = {(γ−γ+)
n}n∈Z

HomΠ1(S1,A)(a1, a2) = {(γ+γ−)
nγ+}n∈Z

HomΠ1(S1,A)(a2, a1) = {(γ−γ+)
nγ−}n∈Z

HomΠ1(S1,A)(a2, a2) = {(γ+γ−)
n}n∈Z.

Here γ+ represents the semi-circle from (1, 0) to (−1, 0) anti-clockwise, and γ− represents the semi-circle
from (−1, 0) to (1, 0) anti-clockwise.
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6 SEIFERT-VAN KAMPEN THEOREM

Example 6.8. Consider the closed orientable surface Σg of genus g, which admits a polygon presentation

P = a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g .

Here is a figure for g = 2.

••

•

•

• •

•

•

•

The edges of the polygon form V2g =
∨2g

i=1 S1. Let U be the interior of the polygon and V be a small open
neighbourhood of V2g. Then U ∩ V is an annulus, which is homotopic to S1 with generator P as above.
Thus

π1(Σg) =
( 2g

ä
i=1

Z
)
? 0/Z = 〈ai, bi | i = 1, . . . , g〉 /

(
a1b1a−1

1 b−1
1 · · · agbga−1

g b−1
g

)
.

Example 6.9. Using the polygon presentation P = a2, we can similarly compute π1(RP2) = Z/2Z

The Jordan Curve Theorem

We give an application of Seifert-van Kampen Theorem to prove the Jordan Curve Theorem. This is an
example which sounds totally obvious intuitively, but turns out to be very difficult to prove rigorously.

Definition 6.10. A simple closed curve is a subset of R2 (or S2) which is homeomorphic to the circle S1.

Theorem 6.11 (The Jordan Curve Theorem). Let C be a simple closed curve in the sphere S2. Then the complement
of C has exactly two connected components.

Proof. We sketch a proof here. Since S2 is locally path connected, we would not distinguish connected and
path connected here. By an arc, we mean a subset of S2 which is homeomorphic to the interval I.

We first show that:
if A is an arc in S2, then S2\A is connected.

In fact, assume that there are two points {a, b} which are disconnected in S2\A. Let us subdivide A =

A1 ∪ A2 into two intervals where A1 = [0, 1/2], A2 = [1/2, 1] using the homeomorphism A ∼= [0, 1]. We
argue that a, b are disconnected in either S2\A1 or S2\A2. Let us choose a set D which contains one point
from each connected component of S2\A and such that {a, b} ⊂ D. Apply Seifert-van Kampen Theorem to
V1 = S2\A1, V2 = S2\A2, V1 ∩V2 = S2\A, we obtain a pushout in Groupoid

Π1(V1 ∩V2, D) //

��

Π1(V2, D)

��
Π1(V1, D) // Π1(Y, D).

Here Y = V1 ∪ V2 is the complement of a point in S2. If {a, b} are connected in both V1 and V2, then the
pushout implies that there exists a nontrivial morphism via the composition

a
in V1−−→ b

in V1∩V2====== b
in V2−−→ a.
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7 SEIFERT-VAN KAMPEN THEOREM

But this can not true since Y is contractible. So let us assume a, b are disconnected in V1 = S2\A1. Run
the above process replacing A by A1, and keep doing this, we end up with contradiction in the limit. This
proves our claim above for the arc.

Secondly, we show that:
the complement of C in S2 is disconnected.

Otherwise, assume that S2\C is connected. Let us divide C = A1 ∪ A2 into two intervals A1, A2 which
intersect at two endpoints {a, b}. Let U1 = S2\A1, U2 = S2\A2, U1 ∩ U2 = S2\C and X = U1 ∪ U2 =

S2\{a, b}. Since U1, U2, U1 ∩ U2 are all connected, Seifert-van Kampen Theorem leads to a pushout in
Group

π1(U1 ∩U2) //

��

π1(U2)

��
π1(U1) // π1(X).

Observe π1(X) = Z. We show both π1(Ui)→ π1(X) are trivial. This would lead to a contradiction.

Let us identify S2 = R2 ∪ {∞} and assume a = 0, b = ∞, so A1 is parametrized by a path α from 0 to ∞.
Let γ be an arbitrary loop in U1, we need to show γ becomes trivial in X. Let R > 0 be sufficient large such
that γ is contained in the ball of radius R centered at the origin in R2. Consider the homotopy

F(t, s) = γ(t)− α(s), γs := F(−, s).

We have γ0 = γ. Assume that α(t0) > R, then γt0 lies inside the ball of radius R centered at α(t0), which is
contractible in X. This implies that γ is trivial in X. The same argument applies to A2.

Finally, we show that:

the complement of C in S2 has exactly two connected components.

Let C = A1 ∪ A2 and U1, U2 as in the previous step. Let D be a set which contains exactly one point from
each connected component of S2\C. We have a pushout in Groupoid

Π1(U1 ∩U2, D) //

��

Π1(U2, D)

��
Π1(U1, D) // Π1(X, D).

Suppose that D contains at least three points, say c, d, e. Since U1, U2 are connected, and points in D are
disconnected in U1 ∩U2, the following two compositions

c
in U1−−−→ d

in U1∩U2====== d
in U2−−−→ c and c

in U1−−−→ e
in U1∩U2====== e

in U2−−−→ c

give two free generators in π1(X, c). But π1(X, c) = Z, contradiction. �
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7 A CONVENIENT CATEGORY OF SPACES

In homotopy theory, it would be convenient to work with a category of spaces which has all limits, col-
imits, and enjoys nice properties about mapping space (especially the Exponential Law). The full category
Top does not work since the Exponential Law fails. The subcategory of locally compact Hausdorff spaces
has the Exponential Law, but does not preserve limits and colimits in general. It turns out that there is some
complete and cocomplete category that sits in between locally compact Hausdorff spaces and all topological
spaces, and enjoys the Exponential Law. Compactly generated weak Hausdorff spaces give such a category
CGWH, which we briefly discuss in this section. This will be a convenient category for homotopy theory.

Compactly generated space

Definition 7.1. A subset Y ⊂ X is called ”compactly closed” (or ”k-closed”) if f−1(Y) is closed in K for
every continuous map f : K → X with K compact Hausdorff. We define a new topology on X, denoted by
kX, where close subsets of kX are compactly closed subsets of X. The identity

kX → X

is a continuous map. X is called compactly generated if kX = X.

Let CG denote the full subcategory of Top consisting of compactly generated spaces.

If a space X is compactly generated, then for any Y, a map f : X → Y is continuous if and only if the
composition K → X → Y is continuous for any continuous K → X with K compact Hausdorff. Note

k2X = kX.

Proposition 7.2. Every locally compact Hausdorff space is compactly generated.

Proof. Let X be locally compact Hausdorff, and Z be a k-closed subset. We need to show Z = Z̄ is closed.

Let x ∈ Z̄. Since X is locally compact Hausdorff, x has a neighborhood U with K = Ū compact Haus-
dorff. Then x ∈ K ∩ Z. Since Z is k-closed, K ∩ Z is closed in K, hence closed in X. So x ∈ Z. �

Proposition 7.3. The assignment X → kX defines a functor Top → CG, which is right adjoint to the embedding
i : CG ⊂ Top. In other words, we have an adjoint pair

i : CG Top : k

Proof. Let X ∈ CG, Y ∈ Top, we need to show that f : X → Y is continuous if and only if the same map
f : X → kY is continuous. Assume f : X → kY is continuous. Then the composition X → kY → Y is
continuous. Conversely, assume f : X → Y is continuous. Let Z ⊂ Y be a k-closed subset. Then for any
g : K → X with K compact Hausdorff,

g−1( f−1(Z)) = ( f ◦ g)−1(Z)

is closed in K. It follows that f−1(Z) is k-closed in X, hence closed. So f : X → kY is continuous. �

Proposition 7.4. Let X ∈ CG and p : X → Y be a quotient map. Then Y ∈ CG.

Proof. By Proposition 7.3, p factor through X → kY. Since the quotient topology is the finest topology
making the quotient map continuous, we find Y = kY. �

Theorem 7.5. The category CG is complete and cocomplete. Colimits in CG inherit the colimits in Top. The limits
in CG are obtained by applying k to the limits in Top.
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Proof. Let F ∈ Fun(I, CG) and F̂ = i ◦ F ∈ Fun(I, Top) where i : CG→ Top is the embedding.

The left adjoint functor i : CG → Top preserves colimits. Since F(i) ∈ CG, their coproduct äi∈I F(i)
in Top (given by the disjoint union) is in CG. Since colim F̂ is a quotient of äi∈I F(i), it also lies in CG by
Proposition 7.4. This implies the statement about colim F.

The right adjoint functor k : Top→ CG preserves limits. Therefore

lim F = lim(k ◦ F̂) = k lim F̂.

�

Corollary 7.6. Let {Xi}i∈I be a family of objects in CG. Then their product in CG is

k ∏
i∈I

Xi

where ∏
i∈I

Xi is the topological product of Xi’s.

Definition 7.7.

We will use ×, ∏ to denote the product in CG and
t
×,

t

∏ to denote the product in Top.

Proposition 7.8. Assume X is compactly generated and Y is locally compact Hausdorff, then X×Y = X
t
×Y.

Definition 7.9. Let X, Y ∈ CG. We define the compactly generated topology on HomTop(X, Y) by

Map(X, Y) = kC(X, Y) ∈ CG .

Here C(X, Y) is the compact-open topology generated by

{ f ∈ HomTop(X, Y)| f (g(K)) ⊂ U}, where g : K → X with K compact Hausdorff and U ⊂ Y is open.

Note that the compact-open topology we use here for CG is slightly different from the usual one: we ask
for a map from K which is compact Hausdorff. We will also use the exponential notation

YX := Map(X, Y).

Lemma 7.10. Let X, Y ∈ CG, K compact Hausdorff, and f : K → X continuous. Then the evaluation map

evK : Map(X, Y)
t
× K → Y, (g, k)→ g( f (k))

is continuous. In particular, Map(X, Y)×K → Y is continuous.

Proof. Let U ⊂ Y be open, and (g, k) ∈ ev−1
K (U). Then g ◦ f−1(U) is open in K and contains k. Since K is

compact Hausdorff, k has a neighborhood V such that V̄ ⊂ g ◦ f−1(U). Then

{h|h( f (V̄)) ⊂ U} ×V

is an open neighborhood of (g, k).

�

Proposition 7.11. Let X, Y ∈ CG. Then the evaluation map Map(X, Y)× X → Y is continuous.
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Proof. Let K be compact Hausdorff, and a continuous map K → Map(X, Y) × X. We need to show the
composition K → Map(X, Y)× X → Y is continuous. But this is the same as the composition

K → Map(X, Y)× K → Y

which is continuous by the previous lemma. �

Proposition 7.12. Let X, Y, Z ∈ CG and f : X×Y → Z continous. Then the induced map

f̂ : X → Map(Y, Z), {x → f (x,−)|x ∈ X}

is also continuous.

Proof. We need to show f̂ : X → C(Y, Z) is continuous. Let h : K → Y be a continuous map with K compact
Hausdorff, and U ⊂ Z open. Let

W = {g : Y → Z|g(h(K)) ⊂ U}.

Let x ∈ f̂−1(W), i.e., f (x, h(K)) ⊂ U. Since f is continuous and K is compact, there exists an open neigh-
borhood V of x such that f (V, h(K)) ⊂ U. Then V ⊂ f−1(W) as required. �

Theorem 7.13 (Exponential Law). Let X, Y, Z ∈ CG. Then the natural map

Map(X×Y, Z)→ Map(X, Map(Y, Z)), f → {x → f (x,−)|x ∈ X}

is a homeomorphism.

Proof. We first show that

HomTop(X×Y, Z)→ HomTop(X, Map(Y, Z))

is a set isomorphism. Note that this map is well-defined by Proposition 7.12, which is obviously injective.

For any continuous g : X → Map(Y, Z), we obtain

f : X×Y
g×1→ Map(Y, Z)×Y → Z

which is continuous. This proves the surjectivity and we have established the set isomorphism.

The fact on homeomorphism is a formal consequence. In fact, for any W ∈ CG, we have

HomTop(W, Map(X×Y, Z)) ∼= HomTop(W × X×Y, Z)

∼= HomTop(W × X, Map(Y, Z))

∼= HomTop(W, Map(X, Map(Y, Z))).

This says that we have a natural isomorphism between the two functors

HomTop(−, Map(X×Y, Z)) ∼= HomTop(−, Map(X, Map(Y, Z))) : CG→ Set .

Then Yoneda Lemma gives rise to the homeomorphism

Map(X×Y, Z) ∼= Map(X, Map(Y, Z)).

�

Proposition 7.14. Let X, Y, Z ∈ CG. Then the composition

Map(X, Y)×Map(Y, Z)→ Map(X, Z), ( f , g)→ g ◦ f

is continuous, i.e., a morphism in CG.
52



7 A CONVENIENT CATEGORY OF SPACES

Proof. This follows from the Exponential Law. By Yoneda Lemma, we need to find a natural transformation

HomTop(W, Map(X, Y)×Map(Y, Z))→ HomTop(W, Map(X, Z)), ∀W ∈ CG .

First we observe that

HomTop(W, Map(X, Y)×Map(Y, Z)) ∼=HomTop(W, Map(X, Y))×HomTop(W, Map(Y, Z))

∼=HomTop(W × X, Y)×HomTop(W ×Y, Z).

Now given two maps f : W × X → Y, g : W ×Y → Z, we consider the composition

W × X
∆×1X→ W ×W × X

1× f→ W ×Y
g→ Z.

Here ∆ : W →W ×W is the diagonal map. This gives naturally the required element of

HomTop(W × X, Z) ∼= HomTop(W, Map(X, Z)).

�

Another nice property of the category CG is that product of quotient maps is a quotient.

Proposition 7.15. Let pi : Xi → Yi, i = 1, 2, be quotients in CG. Then p1× p2 : X1×X2 → Y1×Y2 is a quotient.

Proof. We only need to show that if p : X → Y is a quotient map, then the induced map q : X× Z → Y× Z
is a quotient. Here X, Y, Z ∈ CG. Evidently, q is surjective on sets. This is equivalent to show that for any
map f : Y× Z →W, if q ◦ f is continuous, that f is continuous. By the Exponential Law,

HomTop(X× Z, W) = HomTop(X, Map(Z, W)).

So q ◦ f is equivalent to a continuous map X → Map(Z, W). Since p : X → Y is a quotient, this shows that
f corresponds to a continuous map Y → Map(Z, W). Using the Exponential Law again,

HomTop(Y, Map(Z, W)) = HomTop(Y× Z, W).

This implies the continuity of f . �

Compactly generated weak Hausdorff space

Definition 7.16. A space X is weak Hausdorff if for every compact Hausdorff K and every continuous map
f : K → X, the image f (K) is closed in X.

Let wH denote the full subcategory of Top consisting of weak Hausdorff spaces. Let CGWH denote the
full subcategory of Top consisting of compactly generated weak Hausdorff spaces.

Example 7.17. Hausdorff spaces are weak Hausdorff since compact subsets of Hausdorff spaces are closed.
Therefore locally compact Hausdorff spaces are compactly generated weak Hausdorff spaces.

Proposition 7.18. The functor k : wH → CGWH is right adjoint to the embedding i : CGWH ⊂ wH. In other
words, we have an adjoint pair

i : CGWH wH : k

Proof. This follows from Proposition 7.3.

�

Lemma 7.19. Let X ∈ wH, K compact Hausdorff, and f : K → X continuous. Then f (K) is compact Hausdorff.
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Proof. f (K) is compact and closed. Moreover, f : K → X is a closed map by hypothesis.

Let x1, x2 ∈ f (K) be two points. Since X ∈ wH, x1, x2 are closed, hence f−1(x1), f−1(x2) are disjoint
closed. Since K is compact Hausdorff, there exists disjoint open subsets U1, U2 of K such that f−1(xi) ⊂ Ui.
Then f (K)− f (K−Ui) give disjoint open neighborhoods of xi.

�

Remark 7.20. For a weak Hausdorff X, this lemma says that Z ⊂ X is k-closed if and only if Z ∩ K is closed
in K for any compact Hausdorff subspace K ⊂ X.

Proposition 7.21. Let X ∈ CG. Then X is weak Hausdorff if and only if the diagonal subspace ∆X = {(x, x)|x ∈
X} is closed in X× X. Here X× X is the product in the category CG.

Proof. Assume X ∈ CGWH. We need to show that ∆X is k-closed in X× X. Let

f = ( f1, f2) : K → X× X, fi : K → X

where K is compact Hausdorff. Let
L = f1(K) ∩ f2(K)

which is compact Hausdorff by Lemma 7.19. Consider the diagonal ∆L in L× L, which lies in the image

L→ X× X.

Since L is compact Hausdorff, ∆L is a compact Hausdorff subspace of X × X, hence closed in X × X. It
follows that f−1(∆X) = f−1(∆L) is closed.

Conversely, assume X ∈ CG and ∆X is closed in X × X. Let f : K → X be a continuous map with K
compact Hausdorff. We need to show f (K) is k-closed in X. Let g : L → X be any continuous map with L
compact Hausdorff. Consider

( f , g) : K× L→ X× X.

Then
g−1( f (K)) = ( f , g)−1(∆X)

which is closed. This shows that f (K) is k-closed in X, hence closed in X. �

Remark 7.22. Recall that X ∈ Top is Hausdorff if and only if ∆X is closed in X × X. This proposition says
that CGWH relative to CG is the analogue of Hausdorff spaces relative to Top.

Corollary 7.23. Let {Xi}i∈I be a family of objects in CGWH. Then their product ∏
i∈I

Xi in CG also lies in CGWH.

Proof. Let X = ∏
i∈I

Xi with πi : X → Xi. We need to show that the diagonal ∆X is closed in X× X. Let

πi × πi : X× X → Xi × Xi, Di = (πi × πi)
−1(∆Xi ).

Since ∆i is closed in Xi × Xi, it follows that ∆X = ∩i∈I Di is closed in X× X. �

Proposition 7.24. Let X ∈ CG, and E ⊂ X × X be an equivalence relation on X. Then the quotient space X/E by
the equivalence relation E lies in CGWH if and only if E is closed in X× X.

Proof. By Proposition 7.4, X/E ∈ CG. We need to check the weak Hausdorff property.

Let q : X → Y = X/E denote the quotient map. By Proposition 7.15, the product

q× q : X× X → Y×Y

is also a quotient map. So ∆Y is closed in Y×Y if and only if (q× q)−1(∆Y) = E is closed in X× X. �
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Given X ∈ CG, let EX denote the smallest closed equivalence relation on X. EX is constructed as the
intersection of all closed equivalence relations on X. Then the quotient X/EX by the equivalence relation
EX is an object in CGWH. This construction is functorial, so defines a functor

h : CG→ CGWH .

Proposition 7.25. The functor h : CG → CGWH is left adjoint to the inclusion j : CGWH → CG. That is, we
have an adjoint pair

h : CG CGWH : j

Moreover, h preserves the subcategory CGWH, i.e, h ◦ j is the identity functor.

Proof. Let X ∈ CG, Y ∈ CGWH, and f : X → Y continuous. We need to show that f factors through
X/EX → Y. Consider

f × f : X× X → Y×Y.

Since ∆Y is closed in Y × Y, ( f × f )−1(∆Y) defines a closed equivalence relation on X. Therefore EX ⊂
( f × f )−1(∆Y). It follows that f factors through X → X/EX → Y.

�

Theorem 7.26. The category CGWH is complete and cocomplete. Limits in CGWH inherit the limits in CG. The
colimits in CGWH are obtained by applying h to the colimits in CG.

Proof. Let F ∈ Fun(I, CGWH), then we need to show

colim F = h (colim(j ◦ F)) , j(lim F) = lim(j ◦ F).

The statement about colimit follows from the fact that h ◦ j is the identity functor and h perserves colimits.
For the limit, let

X = ∏
i∈I

F(i), Y = ∏
i

f→j

F(j)

be the products in CG, which also lie in CGWH by Lemma 7.23. Consider two maps g1, g2 : X → Y where

g1({xi}) = {xj}
i

f→j
, g2({xi}) = { f (xi)}

i
f→j

.

Then
lim(j ◦ F) = {x ∈ X|g1(x) = g2(x)} = (g1 × g2)

−1(∆Y)

is a closed subspace of X, hence also lies in CGWH. It can be checked that this is the limit of F. �

Remark 7.27. The proof of the limit part of this theorem does not rely on h. It shows that j : CGWH → CG
preserves all limits. The Adjoint Functor Theorem implies an abstract existence of h.

Proposition 7.28. Let X, Y ∈ CGWH. Then Map(X, Y) ∈ CGWH.

Proof. We need to show that the diagonal ∆Map(X,Y) in Map(X, Y)×Map(X, Y) is closed. Let

evx : Map(X, Y)→ Y, f → f (x), for x ∈ X,

which is continuous. Then
∆Map(X,Y) = ∩x∈X(evx × evx)

−1(∆Y)

is closed since ∆Y is closed in Y×Y. �

Theorem 7.29. Let X, Y, Z ∈ CGWH. Then
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1◦. the evaluation map Map(X, Y)× X → Y is continuous;
2◦. the composition map Map(X, Y)×Map(Y, Z)→ Map(X, Z) is continuous;
3◦. the Exponential Law holds: we have a homeomorphism

Map(X×Y, Z) ∼= Map(X, Map(Y, Z)).

Proof. The theorem follows from Proposition 7.28, Proposition 7.11, Theorem 7.13, Proposition 7.14.

�

Therefore CGWH is a full complete and cocomplete subcategory of Top that enjoys the Exponential Law.

We give a brief discussion on ”subspace topology” in CG to end this section.

Let X ∈ CG and A be a subset of X. The subspace topology on A may not be compactly generated. We
equip A with a compactly generated topology by applying k to the usual subspace topology. This will be
called the subspace topology in the category CG. When we write A ⊂ X, A is understood as s subspace
of X with this compatly generated topology. It is clear that if X ∈ CGWH, then A ∈ CGWH. It can be
checked that if A is the intersection of an open and a closed subset of X, then the usual subspace topology
on A is already compactly generated, so these two notions of subspace coincide in this case.

This new notion of subspace satisfies the standard characteristic property in CG: given Y ∈ CG, a map
Y → A is continuous if and only if it is continuous viewed as a map Y → X.

Definition 7.30. In the category CG, a map i : A → X in CG is called an inclusion if A → i(A) is a
homeomorphism, where i(A) is the image of A with the compactly generated subspace topology from X.

Proposition 7.31. Let X i→ Y r→ X be maps in CGWH such that r ◦ i = 1X . Then i is a closed inclusion and r is
a quotient map.

Proof. It is clear that i is an inclusion and r is a quotient. We show i(X) is a closed inclusion. Consider

(i ◦ r, 1Y) : Y → Y×Y.

Let ∆Y ⊂ Y×Y be the diagonal which is closed. Then i(X) = (i ◦ r, 1Y)
−1(∆Y) is also closed. �

Proposition 7.32. Let X, Y, Z ∈ CGWH and i : X → Y is an inclusion. Then i× 1Z : X× Z → Y× Z is also an
inclusion. If i is closed, then so is i× 1Z.

We will often need the notion of a pair. Given X, Y ∈ CGWH, and subspaces A ⊂ X, B ⊂ Y, we let

Map((X, A), (Y, B)) = { f ∈ Map(X, Y)| f (A) ⊂ B}

be the subspace of Map(X, Y) that maps A to B. It fits into the following pull-back diagram

Map((X, A), (Y, B))

��

// Map(X, Y)

��
Map(A, B) // Map(A, Y).

In our later discussion on homotopy theory, we will mainly work with CGWH. In particular, a space
there always means an object in CGWH. All the limits and colimits are in CGWH. For example, given
X, Y ∈ CGWH, their product X × Y always means the categorical product in CGWH. Subspace refers to
the compacted generated subspace topology.
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To simplify notations, we will write
T = CGWH, hT

for the category CGWH, the quotient category of T by homotopy classes of maps.

We will also need the category of pointed spaces.

Definition 7.33. We define the category T? of pointed spaces where

• an object (X, x0) is a space X ∈ T with a based point x0 ∈ X
• morphisms are based continuous maps that map based point to based point

HomT?
((X, x0), (Y, y0)) = Map((X, x0), (Y, y0)).

We will write
Map?(X, Y) = Map((X, x0), (Y, y0))

when base points are not explicitly mentioned. Map?(X, Y) is viewed as an object in T?, whose base point
is the constant map from X to the base point of Y.

The following theorem follows from the analogue for T described above.

Theorem 7.34. The category T? is complete and cocomplete. Let X, Y, Z ∈ T?. Then

1◦. the evaluation map Map?(X, Y) ∧ X → Y is continuous;
2◦. the composition map Map?(X, Y) ∧Map?(Y, Z)→ Map?(X, Z) is continuous;
3◦. the Exponential Law holds: we have a homeomorphism

Map?(X ∧Y, Z) ∼= Map?(X, Map?(Y, Z)).

Here ∧ is the smash product

X ∧Y =
X×Y

X× {y0} ∪ {x0} ×Y
.
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8 GROUP OBJECT AND LOOP SPACE

Definition 8.1. Let X, Y ∈ T? be two pointed spaces. A based homotopy between two based maps f0, f1 :
X → Y is a homotopy between f0, f1 relative to the base points. We denote [X, Y]0 to be based homotopy
classes of based maps. We define the category hT? by the quotient of T? where

HomhT?
(X, Y) = [X, Y]0.

Definition 8.2. Given (X, x0) ∈ T?, we define the based loop space Ωx0 X or simply ΩX by

ΩX = Map?(S
1, X).

In the unpointed case, we define the free loop space

LX = Map(S1, X).

Our goal in this section is to explore some basic algebraic structures of based loop spaces.

Theorem 8.3. The based loop space Ω defines functors

Ω : T? 7→ T?, Ω : hT? 7→ hT? .

Proof. Let us first consider Ω : T? 7→ T?. This amounts to show that given f : X → Y, the induced map

f∗ : Map?(S
1, X)→ Map?(S

1, Y), γ→ f ◦ γ

is continuous. This follows from Proposition 7.14 since this map is the same as

Map?(S
1, X)× { f } → Map?(S

1, Y).

Now we consider Ω : hT? 7→ hT?. We need to show that if we have a homotopy X
f
&&

g
88�� Y realized

by F : X × I → Y, then the induced maps f∗, g∗ : Map?(S
1, X) → Map?(S

1, Y) are also homotopic. The
required homotopy is given by

ΩF : ΩX× I → ΩY, (γ, t)→ F(−, t) ◦ γ.

To see the continuity of ΩF, we first use Exponential Law to express F equivalently as a continuous map
F̃ : I → Map?(X, Y). Then ΩF is given by the composition

Map?(S
1, X)× I 1×F̃−→ Map?(S

1, X)×Map?(X, Y)→ Map?(S
1, Y),

which is continuous by Proposition 7.14. �

Definition 8.4. Let C be a category with finite product and terminal object ?. A group object in C is an
object G in C together with morphisms

µ : G× G → G, η : G → G, ε : ?→ G

such that the following diagrams commute

1◦. associativity:

G× G× G
1×µ

//

µ×1

��

G× G

µ

��
G× G

µ
// G

.
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2◦. unit:

G× ?
1×ε //

##

G× G

µ

��

?× G
ε×1oo

{{
G

.

3◦. inverse

G

��

1×η
// G× G

µ

��

G
η×1
oo

��
?

ε // G ?
εoo

.

µ is called the multiplication, η is called the inverse, ε is called the unit.

Example 8.5. Here are some classical examples.

• Group objects in Set are groups.
• Group objects in Top are topological groups.
• Group objects in hTop are called H-groups.

Proposition 8.6. Let C be a category with finite products and a terminal object. Let G be a group object. Then

Hom(−, G) : C → Group

defines a contravariant functor from C to Group.

Proof. For any X ∈ C, we define the group structure on Hom(X, G) as followings:

• Multiplication: f · g = µ( f , g) as

Hom(X, G) × Hom(X, G) −→ Hom(X, G)

X
f−→ G X

g−→ G 7→ X
( f ,g)−−→ G× G

µ−→ G,

• Inverse: f−1 = η( f ) as

Hom(X, G) −→ Hom(X, G)

X
f−→ G 7→ X

f−→ G
η−→ G,

• Identity is the image of the morphism Hom(X, ?)→ Hom(X, G). �

Remark 8.7. The converse is also true, by Yoneda Lemma.

In the category T?, product exists and is given by

(X, x0)× (Y, y0) = (X×Y, x0 × y0).

It admits a zero (both initial and terminal) object ?, which is a single point space.

Lemma 8.8. The quotient functor T? → hT? preserves finite product.

Proof. Exercise. �

Theorem 8.9. Let X ∈ T?. Then ΩX is a group object in hT?.
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Proof. The multiplication is the ? composition of paths as in Definition 2.5

ΩX×ΩX → ΩX.

The inverse is the usual reverse of paths. The constant path 1x0 is the zero object. The associativity follows
from Proposition 2.7. We leave the details to the readers. �

By Proposition 8.6, an immediate consequence is:

Corollary 8.10. Any X ∈ hT defines a functor

[−, ΩX]0 : hT? → Group .

Definition 8.11. Let (X, x0) ∈ T?. We define its suspension ΣX by the quotient of X× I:

ΣX = X× I
/
(X× ∂I ∪ x0 × I) X

x0•

•
X× {1}

•
X× {0}

The suspension is the same as the smash product with S1

ΣX = S1 ∧ X.

It defines functors

Σ : T? → T?, hT? → hT? .

Example 8.12. ΣSn ∼= Sn+1 are homeomorphic for any n ≥ 0.

Theorem 8.13. (Σ, Ω) defines adjoint pairs

Σ : T? T? : Ω Σ : hT? hT? : Ω

Proof. This follows from Theorem 7.34. �

Definition 8.14. Let (X, x0) ∈ T?. We define the n-th homotopy group

πn(X, x0) = [Sn, X]0.

Sometimes we simply denote it by πn(X).

In particular, we have

• π0 is the path connected component.
• π1 is the fundamental group.
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• For n ≥ 1, we know that

πn(X) = [ΣSn−1, X]0 = [Sn−1, ΩX]

which is a group since ΩX is a group object.

Proposition 8.15. πn(X) is abelian if n ≥ 2.

Proof. This statement can be also illustrated as follows: �

f f

f fg g

g g
⇒ ⇒ ⇒

.

The following statements are the analogue of what we did in Section 2.

Proposition 8.16. Let X be path connected. There is a natural functor

Tn : Π1(X)→ Group

which sends x0 to πn(X, x0). In particular, there is a natural action of π1(X, x0) on πn(X, x0) and all πn(X, x0)’s
are isomorphic for different choices of x0.

Proposition 8.17. Let f : X → Y be a‘ homotopy equivalence. Then

f∗ : πn(X, x0)→ πn(Y, f (x0))

is a group isomorphism.
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Path space

Definition 9.1. Given a space X ∈ T , and x ∈ X, we define

• free path space: PX = Map(I, X) and
• based path space: PxX = Map((I, 0), (X, x)).

We denote the two maps

PX
p1

!!

p0

}}
X X

,

where p0(γ) = γ(0) is the start point and p1(γ) = γ(1) is the end point of the path γ. It induces

p = (p0, p1) : PX → X× X.

Theorem 9.2. Let X ∈ T . Then

1◦. p : PX → X× X is a fibration.
2◦. The map p0 : PX → X is a fibration whose fiber at x0 is Px0 X.
3◦. The map p1 : Px0 X → X is a fibration whose fiber at x0 is Ωx0 X.
4◦. p0 : PX → X is a homotopy equivalence. Px0 X is contractible.

Proof. (1) We need to prove the HLP of the diagram

Y× {0} //
� _

��

PX

p

��
Y× I //

?

::

X× X

.

By the Exponential Law, this is equivalent to the extension problem

Y× {0} × I ∪Y× I × ∂I //

��

X

Y× I × I

?

77 .

This follows by observing that {0} × I ∪ I × ∂I is a deformation retract of I × I.

(2) follows from the composition of two fibrations

PX //

##

X× X

��
X

.
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(3) follows from the pull-back diagram and the fact that fibrations are preserved under pull-back

Px0 X

��

// PX

��
X

x0×id // X× X.

(4) follows from the retracting path trick, which we have seen before in Section 2. �

Definition 9.3. Let f : X → Y. We define the mapping path space Pf by the pull-back diagram

Pf //

��

PY

p1

��
X

f
// Y

.

An element of Pf is a pair (x, γ) where γ is a path in Y that ends at f (x). Let

ι : X ↪→ Pf , x 7→ (x, 1 f (x))

represent the constant path map and p : Pf → Y be the start point of the path. We have

X ι //

f ��

Pf

p
��

Y

Theorem 9.4. ι : X → Pf is a strong deformation retract (hence homotopy equivalence) and p : Pf → Y is a
fibration. In particular, any map f : X → Y is a composition of a homotopy equivalence with a fibration.

Proof. The first statement follows from the retracting path trick. We prove p is a fibration.

Consider the pull-back diagram
Pf

��

// PY

��
Y× X

id× f
// Y×Y.

This implies Pf → Y× X is a fibration. Since Y× X → Y is also a fibration, so is the composition

p : Pf → Y× X → Y. �

This theorem says that in hT , every map is equivalent to a fibration.

Fiber homotopy

Definition 9.5. Let p1 : E1 → B and p2 : E2 → B be two fibrations. A fiber map from p1 to p2 is a map
f : E1 → E2 such that p1 = p2 ◦ f :

E1

p1 ��

f
// E2

p2��
B

.
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Two fiber maps f0, f1 : p1 → p2 are said to be fiber homotopic

f0 'B f1

if there exists a homotopy F : E1 × I → E2 from f0 to f1 such that F(−, t) is a fiber map for each t ∈ I.
f : p1 → p2 is a fiber homotopic equivalence if there exists g : p2 → p1 such that both f ◦ g and g ◦ f are
fiber homotopic to identity maps.

Proposition 9.6. Let p1 : E1 → B and p2 : E2 → B be two fibrations and f : E1 → E2 be a fiber map. Assume
f : E1 → E2 is a homotopy equivalence, then f is a fiber homotopy equivalence. In particular, f : p−1

1 (b)→ p−1
2 (b)

is a homotopy equivalence for any b ∈ B.

E1

f
++

p1 ��

E2
g

kk

p2��
B

.

Proof. We only need to prove that for any fiber map f : E1 → E2 which is a homotopy equivalence, there is
a fiber map g : E2 → E1 such that g ◦ f 'B 1. In fact, such a g is also a homotopy equivalence and we can
find h : E1 → E2 such that h ◦ g 'B 1. Then f 'B h ◦ g ◦ f 'B h, which implies f ◦ g 'B 1 as well.

Let g : E2 → E1 represent the inverse of the homotopy class [ f ] in hT .

We first show that we can choose g to be a fiber map, i.e., p1 ◦ g = p2 in the following diagram

E1

p1

��
E2

g
>>

p1◦g
// B

.

Otherwise, we observe that p1 ◦ g = p2 ◦ f ◦ g ' p2. We can use the fibration p1 to lift the homotopy
p1 ◦ g ' p2 to a homotopy g ' g′. Then g′ is a fiber map, and we can replace g by g′.

E1

p1

��

E2
p1◦g

  
p2

,,

��

g

33

g′

>>

��

B

.

Now we assume g : E2 → E1 is a fiber map. The problem can be further reduced to the following

“Claim”: Let p : E → B be a fibration and f : E → E is a fiber map that is homotopic to 1E, then there is a
fiber map h : E→ E such that h ◦ f 'B 1.

In fact, let f : E1 → E2 as in the proposition, g : E2 → E1 be a fiber map such that g ◦ f ' 1 as chosen
above. The “Claim” implies that we can find a fiber map h : E1 → E1 such that h ◦ g ◦ f 'B 1. Then the
fiber map g̃ = h ◦ g has the required property that g̃ ◦ f 'B 1.
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Now we prove the “Claim”. Let F be a homotopy from f to 1E and G = p ◦ F. Since p is a fibration, we
can construct a homotopy H that starts from 1E and lifts G. Here is the picture

E
f

**

1E

44�� F E

p

��

h // E

p
��

E
p

**

p

44�� G B

E
1E

**

h

44�� H E

p

��
E

p
**

p

44�� G B

.

Combining these two homotopies we find a homotopy F̃ from h ◦ f to 1E that lifts the following homotopy

G̃ : E× I → B, G̃(−, t) =

G(−.2t) 0 ≤ t ≤ 1/2

G(−, 2− 2t) 1/2 ≤ t ≤ 1
.

Here is the picture

E
h◦ f

**

1E

44�� F̃ E

p

��
E

p
**

p

44�� G̃ B

.

We can construct a map K : E × I × I → B that gives a homotopy between G̃ : E × I → B and the

projection E× I → E
p→ B (by pushing the two copies of G in G̃) :

K(−, u, 0) = G̃(−, u),

K(−, u, 1) = p(−),

K(−, 0, t) = p(−),

K(−, 1, t) = p(−), ∀u, t ∈ I.

t

E

u

Kp

p

⇒G̃

Since p is a fibration, we can find a lift K̃ : E× I × I → E of K such that

K̃(−, u, 0) = F̃(−, u).
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u

E

t

K̃

h ◦ f

1E

⇒F̃
•

•

Then we have the following fiber homotopy

h ◦ f = K̃(−, 0, 0) 'B K̃(−, 0, 1) 'B K̃(−, 1, 1) 'B K̃(−, 1, 0) = 1E. �

Homotopy fiber

Definition 9.7. Let f : X → Y, we define its homotopy fiber over y ∈ Y to be the fiber of Pf → Y over y.

Proposition 9.8. If Y is path connected, then all homotopy fibers of f : X → Y are homotopic equivalent.

Proof. Let y1, y2 ∈ Y, and F1, F2 be the homotopy fiber over y1, y2. Then

Fi = {(x, γ)|γ : I → Y, γ(0) = yi, γ(1) = f (x)}

and composition with a path in Y from y1 to y2 gives a homotopy equivalence between F1, F2. �

In this case we will usually write the following diagram

F // X

f
��

Y

where F denotes the homotopy fiber.

Proposition 9.9. If f : X → Y is a fibration, then its homotopy fiber at y is homotopy equivalent to f−1(y).

Proof. We have the commutative diagram

X ι //

f ��

Pf

p
��

Y
where ι is a homotopy equivalence. Then ι is a fiber homotopy equivalence by Proposition 9.6. �

Corollary 9.10. Let f : X → Y be a fibration and Y path connected. Then all fibers of f are homotopy equivalent.

Proof. Given any two points y1, y2 in Y, their fibers f−1(y1), f−1(y2) are homotopy equivalent to the corre-
sponding homotopy fibers. The corollary follows since all homotopy fibers are homotopy equilvalent. �

Recall the following theorem which gives a criterion for fibration that is very useful in practice.

Theorem 9.11. Let p : E → B with B paracompact Hausdorff. Assume there exists an open cover {Uα} of B such
that p−1(Uα)→ Uα is a fibration. Then p is a fibration.

Corollary 9.12. Let p : E→ B be a fiber bundle with B paracompact Hausdorff. Then p is a fibration.
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10 EXACT PUPPE SEQUENCE

Definition 10.1. A sequence of maps of sets with base points (i.e. in the category Set∗)

(A, a0)
f−→ (B, b0)

g→ (C, c0)

is said to be exact at B if im( f ) = ker(g), where im( f ) = f (A) and ker(g) = g−1(c0). A sequence

· · · → An+1 → An → An−1 → · · ·

is called an exact sequence if it is exact at every Ai.

Example 10.2. Let H / G be a normal subgroup of G. Then there is a short exact sequence

1→ H → G → G/H → 1

in Group. Here we view Group as a subcategory of Set∗, where a group is based at its identity element.

Definition 10.3. A sequence of maps in hT?

· · · → Xn+1 → Xn → Xn−1 → · · ·

is called exact if for any Y ∈ hT?, the following sequence of pointed sets is exact

· · · → [Y, Xn+1]0 → [Y, Xn]0 → [Y, Xn−1]0 → · · ·

The goal of this section is to study the relationship between homotopy groups via exact sequence.

Definition 10.4. Let f : (X, x0) → (Y, y0) be a map in T?. We define its homotopy fiber Ff in T? by the
pull-back diagram

Ff //

π

��

Py0Y

p1

��
X

f
// Y

Ff = {(x, γ) ∈ X× PY|γ(0) = y0, γ(1) = f (x)}.

Recall that p1 : Py0Y → Y is a fibration, thus

Lemma 10.5. π : Ff → X is a fibration.

Note that Ff is precisely the fiber of Pf → Y over y0:

Ff //

π

��

Pf

p0

��
y0
� � // Y

.

So this is the same as our definition before. We will emphasize on the role of based point in this section.

The following lemma is the same as Proposition 9.9. We restate here for convenience.

Lemma 10.6. If f : X → Y is a fibration, then f−1(y0) is homotopy equivalent to its homotopy fiber Ff .
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For arbitrary map f : X → Y, we still have a canonical map

j : f−1(y0)→ Ff ,

which may not be a homotopy equivalence. The homotopy fiber can be viewed as a good replacement of
fiber in homotopy category that behaves nicely for fibrations.

Lemma 10.7. The sequence

Ff
π−→ X

f−→ Y

is exact at X in hT?.

Proof. Let y0 be the base point of Y. We first observe that f ◦ π factors through Py0Y which is contractible.
Therefore f ◦ π is null homotopy. Let Z ∈ hT?. Consider

[Z, Ff ]0
π∗→ [Z, X]0

f∗→ [Z, Y]0.

Since f ◦ π is null homotopic, we have im π∗ ⊂ ker f∗.

Let g : Z → X such that [g]0 ∈ ker f∗. Let G be a based homotopy of f ◦ g to the trivial map:

G : Z× I → Y.

Since G |Z×{0}= y0, it can be regarded as a map (via the Exponential Law)

G : Z → Py0Y

that fits into the following diagram

Z

g

��

G

''��
Ff //

π

��

Py0Y

p1

��
X

f
// Y

.

Therefore the pair (G, g) factors through Ff . This implies [g]0 ∈ im π∗. So ker f∗ ⊂ im π∗. �

Notice that the fiber of Ff over x0 is precisely ΩY

ΩY //

��

Ff

π

��
x0
� � // X

.

We find the following sequence of pointed maps

ΩX
Ω f−→ ΩY → Ff

π−→ X
f−→ Y.

Lemma 10.8. The sequence ΩX
Ω f−→ ΩY → Ff

π−→ X
f−→ Y is exact in hT?.
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Proof. We construct the commutative diagram (†) in hT? with all vertical arrows homotopy equivalences

ΩX
Ω f

//

j̃′

��

ΩY //

j

��

Ff
π //

��

X
f
//

��

Y

��
Fπ′

π′′ // Fπ
π′ // Ff

π // X
f
// Y

.(†)

Fπ is the homotopy fiber of π : Ff → X, given by the pull-back

Fπ
//

��

Px0 X

p1

��
Ff

π // X

or explicitly

Fπ = {([γ], [β]) ∈ Py0Y× Px0 X| f (β(1)) = γ(1)}.

Since Ff
π−→ X is a fibration with fiber ΩY, the map j : ΩY → Fπ is the natural map of fiber into homotopy

fiber which is a homotopy equivalence by Lemma 10.6. By construction, the second square in (†) commutes.

Explicitly, the map j : ΩY → Fπ sends a loop [β] based at y0 to the pair

j([β]) = ([1x0 ], [β]).

Similarly, the fiber of the fibration Fπ → Ff is ΩX. We find the natural map

j′ : ΩX → Fπ′

from fiber into homotopy fiber, which is a homotopy equivalence. Let

(−)−1 : ΩX → ΩX, γ→ γ−1

be the inverse of the loop. We define

j̃′ = j′ ◦ (−)−1 : ΩX → Fπ′ .

which is again a homotopy equivalence. Let us form the commutative diagram

ΩX

j̃′

��

k

!!
Fπ′

π′′
// Fπ

which defines the map k : ΩX → Fπ . Consider the diagram

ΩX

k
!!

Ω f
// ΩY

j

��
Fπ .
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This diagram is NOT commutative in T?. However, j ◦Ω f is homotopic to k, so this diagram commutes in
hT?. To see this, let us explicitly write

k([γ]) = ([γ−1], [1y0 ]),
(

j ◦Ω f
)
(γ) = ([1x0 ], [ f (γ)]).

They are homotopic via

F([γ], t) =
(
[(γ |[t,1])−1], f

[
γ |[0,t]

] )
.

Therefore the first square in (†) commutes in hT?. The lemma follows. �

Lemma 10.9. Let X1 → X2 → X3 be exact in hT?, then so is ΩX1 → ΩX2 → ΩX3.

Proof. For any Y, apply [Y,−]0 to the exact sequence X1 → X2 → X3 and use the fact that Ω is right adjoint
to the suspension Σ, i.e. [ΣY, Xi]0 = [Y, ΩXi]0, we obtain an exact sequence. This implies the lemma. �

Theorem 10.10 (Exact Puppe Sequence). Let f : X → Y in T?. Then the following sequence in exact in hT?

· · · → Ω2Y → ΩFf → ΩX → ΩY → Ff → X → Y.

Proof. The theorem follows from Lemma 10.8 and Lemma 10.9.

�

Theorem 10.11. Let p : E → B be a map in T?. Assume p is a fibration whose fiber over the base point is F. Then
we have an exact sequence of homotopy groups

· · · → πn(F)→ πn(E)→ πn(B)→ πn−1(F)→ · · · → π0(E)→ π0(B).

Proof. Since p is a fibration, F is homotopy equivalent to Fp. Observe that

[S0, ΩnX]0 = [ΣnS0, X]0 = [Sn, X] = πn(X).

The theorem follows by applying [S0,−]0 to the Puppe Sequence associated to p : E→ B. �

This theorem give a very effective method to compute homotopy groups via fibrations.

Example 10.12. Consider the universal cover exp : R1 → S1. The associated long exact sequence implies

πn(S1) = 0, ∀n > 1.

Proposition 10.13. If i < n, then πi(Sn) = 0.

Sketch of proof. Let f : Si → Sn. We need the following fact: any continuous map from a compact smooth
manifold X to Sn can be uniformly approximated by a smooth map. Furthermore, two smooth maps are
continuously homotopic, then they are smoothly homotopic. This follows by performing perturbation
locally (in small neighbourhoods at each point) while compactness implies that the perturbation can be
performed globally.

Thus, we can assume that f is homotopic to a smooth map f ′. Then f ′ is not surjective (for dimension
reason). Thus, f ′ : Si → (Sn − {pt}) ' Rn ' {pt} is null homotopic. �

Example 10.14. Consider the Hopf fibration S3 → S2 with fiber S1. The associated long exact sequence of
homotopy groups implies

π2(S2) ∼= Z and πn(S3) ∼= πn(S2) for n ≥ 3.
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Cofibration

Definition 11.1. A map i : A → X is said to have the homotopy extension property (HEP) with respect
to Y if for any map f : X → Y and any homotopy F : A × I → Y where F(−, 0) = f ◦ i, there exists a
homotopy F̄ : X× I → Y such that

F̄(i(a), t) = F(a, t), F(x, 0) = f (x), ∀a ∈ A, x ∈ X, t ∈ I.

A i //

��

X

��
f

��

A× I

F

))

// X× I

F̄

""
Y .

Definition 11.2. A map i : A→ X is called a cofibration if it has HEP for any spaces.

The notion of cofibration is dual to that of the fibration: fibration is defined by the HLP of the diagram

Y
f

//� _

��

E

p

��
Y× I

F
//

∃F̃

<<

B .

If we reverse the arrows and observe that Y × I is dual to the path space Y I via the adjointness of (−)× I
and (−)I , we arrive at HEP (using Exponential Law)

Y X
f

oo

∃F̃

~~
Y I

p0

OO

A .

i

OO

F
oo

Definition 11.3. Let f : A→ X. We define its mapping cylinder M f by the push-out

A× {0}

f

��

� � // A× I

�� f×1

��

X× {0} � v

))

// M f

j

##
X× I .
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11 COFIBRATION

A× {1}

X× {0}

FIGURE 16. The mapping cylinder M f

There is a natural map j : M f → X × I induced by the inclusion X × {0} → X × I and f × 1 : A× I →
X × I. The mapping cylinder topology (i.e. the push-out topology) of M f says that a map g : M f → Z is
continuous if and only if g is continuous when it restricted to X× {0} and to A× I.

Lemma 11.4. The HEP of i : A→ X is equivalent to the property of filling the commutative diagram

Mi

��

// Y

X× I .

∃?

<<

Proposition 11.5. Let i : A → X and j : Mi → X × I be defined as above. Then i is a cofibration if and only there
exists r : X× I → Mi such that r ◦ j = 1Mi .

Proof. If i is a cofibration, then take Y = Mi in the lemma above and we obtain the required map r. On the
other hand, if r exists, then any f : Mi → Y lifts to f ◦ r. �

Proposition 11.6. Let i : A → X be a cofibration. Then i is a homeomorphism to its image (i.e. embedding). If we
work in T , so A, X are compactly generated weak Hausdorff. Then i has closed image (i.e. closed inclusion).

Proof. Consider the following commutative diagram obtained from the previous proposition

Mi

j

��

1Mi // Mi

X× I

r

<<

.

This implies that Mi is homeomorphic to its image j(Mi). Consider the next commutative diagram

A //

i
��

Mi

j
��

X
1X×{1}

// X× I .

Since A→ Mi, Mi → X× I, X → X× I are all embeddings, so is i : A→ X.

Assume now that A, X ∈ T are compactly generated weak Hausdorff. By Proposition 7.31, j : Mi →
X× I is a closed inclusion. Since A→ Mi, X → X× I are also closed inclusions, so is i : A→ X.

�
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11 COFIBRATION

Remark 11.7. A cofibration is not closed in general. An example is X = {a, b} having two points with the
trivial topology and A = {a} is one of the point.

Definition 11.8. Let A be a subspace of X. We say (X, A) is cofibered if the inclusion A ⊂ X is a cofibration.

Proposition 11.9. Let A be a closed subspace of X. Then the inclusion map i : A ⊂ X is a cofibration if and only if
X× {0} ∪ A× I is a retract of X× I.

Proof. If i is closed, then Mi is homeomorphic to the subspace X× {0} ∪ A× I of X× I. �

Remark 11.10. If A ⊂ X is not closed, then the mapping cylinder topology for Mi and the subspace topology
for X× {0} ∪ A× I may not be the same. For example, we take choose

X = [0, 1], A = {1, 1/2, 1/3, · · · , 1/n, · · · }.

Consider the subspace Z = {(1, 1), (1/2, 1/2), · · · , (1/n, 1/n), · · · } ⊂ A× I. Then Z is closed in A× I and
Z ∩ (X× {0}) = ∅. So Z is closed in the mapping cylinder, but not closed in X× {0} ∪ A× I.

Example 11.11. The inclusion Sn−1 ↪→ Dn is a cofibration, cf. Figure 17.

Dn × {0}

Sn−1 × I

FIGURE 17. Dn × {0} ∪ Sn−1 × I is a retract of Dn × I

Proposition 11.12. Let f : A→ X be any map. Then the closed inclusion

i1 : A→ M f , a→ (a, 1)

is a cofibration.

Proof. Figure 11 shows M f × {0} ∪ A× I is a retract of M f × I. So i1 is a cofibration.

X

A

M f

A× I

M f × I

FIGURE 18. Retract of M f × I

�
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Example 11.13. The inclusion A→ A× I, a→ a× {0}, is a cofibration. In fact, we can view it as

A→ M1A

where 1A : A→ A is the identity map.

Definition 11.14. Let A be a subspace of X. A is called a neighborhood deformation retract (NDR) if there
exists a continuous map u : X → I with A = u−1(0) and a homotopy H : X× I → X such that

H(x, 0) = x ∀x ∈ X

H(a, t) = a if (a, t) ∈ A× I

H(x, 1) ∈ A if u(x) < 1 .

Note that if A is a NDR of X, then A is a strong deformation retract of the open subset u−1([0, 1)) of X.

Theorem 11.15. Let A be a closed subspace of X. Then the following conditions are equivalent

1◦. (X, A) is a cofibered pair.
2◦. A is a NDR of X.
3◦. X× {0} ∪ A× I is a retract of X× I.
4◦. X× {0} ∪ A× I is a strong deformation retract of X× I.

Proof. We have seen the equivalence between (1) and (3).

(3) =⇒ (2). Let r be a retraction map

r : X× I → X× {0} ∪ A× I.

Let πX : X× I → X, πI : X× I → I be the projections. We obtain the data for NDR by

u : X → I, u(x) = sup
t∈I
|t− πI ◦ r(x, t)|

and

H : X× I → X, H(x, t) = πX ◦ r(x, t).

(2) =⇒ (3). Given the data (u, H) for NDR. We define a retraction r : X× I → X× {0} ∪ A× I by

r(x, t) = (x, 0) if u(x) = 1

r(x, t) = (H(x, 2(1− u(x))t), 0) if 1/2 ≤ u(x) < 1

r(x, t) = (H(x, t/(2u(x))), 0) if 0 < u(x) ≤ 1/2, 0 ≤ t ≤ 2u(x)

r(x, t) = (H(x, 1), t− 2u(x)) if 0 < u(x) ≤ 1/2, 2u(x) ≤ t ≤ 1

r(x, t) = (x, t) if u(x) = 0 .

(4) =⇒ (3). Obvious.

(3) =⇒ (4). Let r : X× I → X× {0} ∪ A× I be a retraction map. Then the following homotopy

F : X× I × I → X× {0} ∪ A× I rel X× {0} ∪ A× I

F(x, t, s) = (πX ◦ r(x, (1− s)t), (1− s)πI ◦ r(x, t) + st)

gives the required strong deformation retract. �
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Basic properties

Proposition 11.16. Let i : A→ X be a cofibration, f : A→ B is a map. Consider the push-out

A

i
��

f
// B

j
��

X // Y .

Then j : B→ Y is also a cofibration. In other words, the push-out of a cofibration is a cofibration.

Proof. The proof is dual to Proposition 5.15.

�

Proposition 11.17. Let i : X → Y and j : Y → Z be cofibrations. Then j ◦ i : X → Z is also a cofibration.

Proof. Exercise. �

Proposition 11.18. If i : A → X is a cofibration and A is contractible, then the quotient map X → X/A is a
homotopy equivalence.

Proof. Exercise. �

The next proposition is very useful in constructing homotopies.

Proposition 11.19. Let A ⊂ X and B ⊂ Y be closed inclusions which are both cofibrations. Then the inclusion

X× B ∪ A×Y ⊂ X×Y

is also a cofibration. As a consequence, A× B→ X×Y is a cofibration.

Proof. Let u : X → I, H : X × I → X be the data of NDR for A ↪→ X, and v : Y → I, K : Y × I → Y be the
data of NDR for B ↪→ Y. Consider the following maps

ϕ : X×Y → I, ϕ(x, y) = min{u(x), v(y)}

and

Σ : X×Y× I → X×Y, Σ(x, y, t) =


(x, y) if u(x) = v(y) = 0(

H(x, t), K(y, t u(x)
v(y) )

)
if u(x) ≤ v(y) 6= 0(

H(x, t v(y)
u(x) ), K(y, t)

)
if 0 6= u(x) ≥ v(y)

Then (ϕ, Σ) defines a data of NDR for X× B ∪ A×Y ⊂ X×Y, so a cofibration. As a special case, if B = ∅,
then A×Y → X×Y is a cofibration.

Now consider the following push-out diagram

A× B

��

// A×Y

��
X× B // X× B ∪ A×Y

So all arrows in this diagram are cofibrations. It follows that A× B→ X×Y is a cofibration.

�
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Let f : A→ X be a map. Consider the diagram of mapping cylinder

A

f
��

i0 // A× I

��
X // M f .

There is a natural commutative diagram

A
i1

~~

f

  
M f

r // X .

Here i1(a) = (a, 1), r(a, t) = f (a), r(x, 0) = x.

It is easy to see that r is a homotopy equivalence. We have the following dual statement of Theorem 9.4.

Theorem 11.20. The map r : M f → X is a homotopy equivalence, and i1 : A → M f is a cofibration. In particular,
any map f : A→ X is a composition of a cofibration with a homotopy equivalence.

Definition 11.21. Let i : A → X, j : A → Y be cofibrations. A map f : X → Y is called a cofiber map if the
following diagram is commutative

A
i

��

j

  
X

f
// Y .

A cofiber homotopy between two cofiber maps f , g : X → Y is a homotopy of cofiber maps between f and
g. Cofiber homotopy equivalence is defined similarly.

The following result is the cofibration analogue of Proposition 9.6.

Proposition 11.22. Let i : A → X, j : A → Y be cofibrations. Let f : X → Y be a cofiber map. Assume f is a
homotopy equivalence. Then f is a cofiber homotopy equivalence.

Cofiber exact sequence

Now we work with the category T? and hT?. All maps and testing diagrams are required to be based.

Definition 11.23. A based space (X, x0) is called well-pointed, if the inclusion of the base point x0 ∈ X is a
cofibration in the unbased sense.

Definition 11.24. Let (X, x0) ∈ T?. We define its (reduced) cone by

C?X = X ∧ I = X× I/ (X× {0} ∪ x0 × I) .

Proposition 11.25. If X is well-pointed, then the embedding i1 : X → C?X where i1(x) = (x, 1) is a cofibration.

Definition 11.26. Let f : (X, x0)→ (Y, y0) ∈ T?. We define its (reduced) mapping cylinder by

M? f = M f /{x0 × I}.
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X
x0•

FIGURE 19. The reduced cone C?X

X× {1}

Y•x0

FIGURE 20. The reduced mapping cylinder M f

If (X, x0) is well-pointed, then the quotient M f → M? f is a homotopy equivalence.

Given f : X → Y in T?, we define its (reduced) homotopy cofiber C? f by the push-out

X

f
��

i1 // C?X

��
Y

j
// C? f

If X is well-pointed, then j : Y → C? f is also a cofibration. Note that the quotient of C? f by Y is precisely
ΣX. We can extend the above maps by

X // Y // C? f // ΣX // ΣY // ΣC? f // Σ2X // · · · .

Definition 11.27. A sequence of maps in hT?

· · · → Xn+1 → Xn → Xn−1 → · · ·

is called co-exact if for any Y ∈ hT?, the following sequence of pointed sets is exact

· · · → [Xn−1, Y]0 → [Xn, Y]0 → [Xn+1, Y]0 → · · ·

Theorem 11.28 (Co-exact Puppe Sequence). Let f : X → Y in T? between well-pointed spaces. The following
sequence is co-exact in hT?

X // Y // C? f // ΣX // ΣY // ΣC? f // Σ2X // · · · .

Lemma 11.29. Let f : A→ X be a cofibration between well-pointed spaces. Then the natural embedding

C?(A)→ C? f

is a cofibration.
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Proof. This follows from the push-out diagram

A

f
��

// C?(A)

��
X

j
// C? f

�

Theorem 11.30. Let f : A→ X be a cofibration between well-pointed spaces. Then the natural map

r̄ : C? f → X/A

is a homotopy equivalence. In other words, the cofiber is homotopy equivalent to the homotopy cofiber.

Proof. Since C?(A)→ C? f is a cofibration and C?(A) is contractible, Proposition 11.18 implies

C? f → C? f /C?(A) = X/A

is a homotopy equivalence. �

Theorem 11.31. Let i : A→ X be a cofibration between well-pointed spaces. The following sequence

A // X // X/A // ΣA // ΣX // Σ(X/A) // Σ2 A // · · ·

is co-exact in hT?.
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CW complex

Recall that Sn−1 ↪→ Dn is a cofibration satisfying HEP, where, Dn is the n-disk and Sn−1 = ∂Dn is its
boundary, the (n− 1)-sphere. Let

en = (Dn)◦ = Dn − ∂Dn

denote the interior of Dn, the open disk known as the n-cell.

The category of CW-complex consists of topological spaces that can be built from n-cells (like lego, and
thus behaves nicely just like Sn−1 ↪→ Dn). Moreover, it is large enough to cover most interesting examples.

Definition 12.1. A cell decomposition of a space X is a family

E = {en
α |α ∈ Jn}

of subspaces of X such that each en
α is a n-cell and we have a disjoint union of sets

X = ä en
α .

The n-skeleton of X is the subspace

Xn = ä
α∈Jm ,m≤n

em
α .

Definition 12.2. A CW complex is a pair (X, E) of a Hausdorff space X with a cell decomposition such that

1◦. Characteristic map: for each n-cell en
α , there is a characteristic map

Φen
α

: Dn → X

such that the restriction of Φen
α

to (Dn)◦ is a homeomorphism to en
α and Φen

α
(Sn−1) ⊂ Xn−1.

2◦. C=Closure finiteness: for any cell e ∈ E the closure ē intersects only a finite number of cells in E .
3◦. W=Weak topology: a subset A ⊂ X is closed if and only if A ∩ ē is closed in ē for each e ∈ E .

We say X is an n-dim CW complex if the maximal dimension of cells in E is n (n could be ∞).

Note that the Hausdorff property of X implies that ē = Φe(Dn) for each cell e ∈ E . The surjective map
Φe : Dn → ē is a quotient since Dn is compact and ē is Hausdorff. Let us denote the full characteristic maps

Φ : ä
e∈E

Dn ä Φe−→ X.

Then the weak topology implies that Φ is a quotient map. This implies the following proposition.

Proposition 12.3. Let (X, E) be a CW complex. Then f : X → Y is continuous if and only if

f ◦Φe : Dn → Y

is continuous for each e ∈ E .

Proposition 12.4. Let (X, E) be a CW complex. Then any compact subspace of X meets only finitely many cells.

Proof. Assume K is a compact subspace of X which meets infinitely many cells. Let xi ∈ K ∩ ei, i = 1, 2, · · · ,
where ei’s are different cells. Consider the subset

Zm = {xm, xm+1, · · · }, m ≥ 1.
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By the closure finiteness, Zm intersects each closure ē by finite points, hence closed in ē by the Hausdorff
property. By the weak topology, Zm is a closed subset of X, hence closed in K. Observe⋂

m≥1

Zm = ∅

but any finite intersection of Zm’s is non-empty. This contradicts the compactness of K. �

Proposition 12.5. Let (X, E) be a CW complex and Xn be the n-skeleton. Then X is the colimit (i.e. direct limit) of
the telescope diagram

X1 → X2 → · · · → Xn → · · ·

Proof. This is because f : X → Y is continuous if and only if f : Xn → Y is continuous for each n.

�

Proposition 12.6. Let (X, E) be a CW complex. Then X is compactly generated weak Hausdorff.

Proof. X is Hausdorff, hence also weak Hausdorff. We check X is compactly generated.

Assume Z ⊂ X is k-closed. Since the closure of each cell ē is compact Hausdorff, Z ∩ ē is closed in ē. The
weak topology implies that Z is closed in X.

�

Example 12.7. Here are some classical examples.

• The n-sphere Sn as a 0-cell and an n-cell:

•e
0

en

In this case, we have
Sn = e0 ∪ en

• The n-sphere Sn with two n-cells and a (n− 1)-sphere:

Sn−1

en
+

en
−

Thus we have

Sn = en
+ ∪ en

− ∪ Sn−1

= (en
+ ∪ en

−) ∪
(

en−1
+ ∪ en−1

−

)
∪ · · · ∪

(
e0
+ ∪ e0

−

)
80



12 CW COMPLEX

• Gride/cube decomposition of Rn into n-cubes In ' Dn.

• • •

• • •

• • •

• CPn : (Cn+1 − {0})/ ∼ and we have

CP0 ⊂ CP1 ⊂ · · ·CPn−1 ⊂ CPn ⊂ · · · ⊂ CP∞.

Moreover,

CPn −CPn−1 = {[z0, . . . , zn] | zn 6= 0}

' Cn ' e2n.

Thus CPn has one cell in every even dimension from 0 to 2n with characteristic map

Φ2n : D2n −−−→ CPn

(z0, . . . , zn) 7→
[
z0, . . . , zn−1,

√
1− Σn−1

i−0 |zi|2
]

Definition 12.8. A subcomplex (X′, E ′) of the CW complex (X, E) is a closed subspace X′ ⊂ X with a cell
decomposition E ′ ⊂ E . We will just write X′ ⊂ X when the cell decomposition is clear. We will also write
X′ = |E ′|. Equivalently, a subcomplex is described by a subset E ′ ⊂ E such that

e1 ∈ E ′, e2 ∈ E , ē1 ∩ e2 6= ∅ =⇒ e2 ∈ E ′.

Example 12.9. The n-skeleton Xn is a subcomplex of X of dimension ≤ n.

Attaching cells

Definition 12.10. Given f : Sn−1 → X. Consider the push-out

Sn−1 f
//

� _

��

X� _

��
Dn

Φ f // Dn ä f X

We say Dn ä f X is obtained by attaching an n-cell to X.
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12 CW COMPLEX

f (Sn−1) Sn−1

←−

Dn

X

FIGURE 21. Attaching a cell

Φ f is called the characteristic map of the attached n-cell. More generally, if we have a set of maps
fα : Sn−1 → X, then the push-out

äα Sn−1 f
//

� _

��

X� _

��
äα Dn

Φ f // (ä Dn)ä f X

f = ä fα

is called attaching n-cells to X.

Example 12.11. The n-sphere Sn can be obtained by attaching an n-cell to a point.

•e
0

en

Proposition 12.12. Let (X, E) be a CW complex, and E = ä En where En is the set of n-cells. Then the diagram

ä
e∈En

Sn−1 ∂Φn
//

� _

��

Xn−1

��
ä

e∈En
Dn Φn

// Xn

Φn = ä
e∈En

Φe

is a push-out. In particular, Xn is obtained from Xn−1 by attaching n-cells in X.

Proof. This follows from the fact that Xn−1 is a closed subspace of Xn and the weak topology. �

The converse is also true. The next theorem can be viewed as an alternate definition of CW complex.
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12 CW COMPLEX

Theorem 12.13. Suppose we have a sequence of spaces

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · ·

where Xn is obtained from Xn−1 by attaching n-cells. Let X = ∪n≥0Xn be the union with the weak topology: A ⊂ X
is closed if and only if A ∩ Xn is closed in Xn for each n. Then X is a CW complex.

The theorem follows directly from the next lemma.

Lemma 12.14. Let X be a (n − 1)-dim CW complex and Y is obtained from X by attaching n-cells. Then Y is a
n-dim CW complex.

Proof. We need to check the following properties of Y.

H: The Hausdroff property of Y. Take x, y ∈ Y. If x lies in an n-cell, then it is easy to separate x from y.
Otherwise, let x, y ∈ X and take their open neighbourhoods U, V in X that separate them. Consider
attaching the n-cells via the push-out:

ä
α

Sn−1
ä
α

gα

//
� _

��

X� _

��
ä
α

Dn
ä
α

Φα

// Y

Then g−1
α (U), g−1

α (V) are open in Sn−1. Take their open neighbourhoods Uα, Vα in Dn, i.e.

Uα ∩ Sn−1 = g−1
α (U), Vα ∩ Sn−1 = g−1

α (V)

such that Uα ∩Vα = ∅. Then U ∪ (
⋃

α Uα) and V ∪ (
⋃

α Vα) are separated neighbourhoods of x, y.
C: Closure finiteness follows from the fact that Sn−1 is compact.

W: Weak topology follows from the push-out construction.

�

Definition 12.15. Let A be a subspace of X. A CW decomposition of (X, A) consists of a sequence

A = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ X

such that Xn is obtained from Xn−1 by attaching n-cells and X carries the weak topology with respect to the
subspaces Xn. The pair (X, A) is called a relative CW complex.

We say (X, A) has relative dimension n if the maximal dimension of cells attached is n (n could be ∞).

Note that for a relative CW complex (X, A), A itself may not be a CW complex.

Proposition 12.16. Let (X, A) be a relative CW complex. Then A ⊂ X is a cofibration.

Proof. Sn−1 ↪→ Dn is a cofibration, and cofibration is preserved under push-out, so each

Xn−1 → Xn

is a cofibration. The proposition follows since composition of cofibrations is a cofibration. �

Corollary 12.17. Let X be a CW complex and X′ be a CW subcomplex. Then X′ → X is a cofibration.

Proof. (X, X′) is a relative CW complex. �
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12 CW COMPLEX

Product of CW complexes

Let (X, E), (Y, Ẽ) be two CW complexes. We can define a cellular structure on X×Y with n-skeleton

(X×Y)n = {ek
α × ẽl

β|0 ≤ k + l ≤ n, ek
α ∈ E , ẽl

β ∈ Ẽ}

and characteristic maps
Φk,l

α,β = (Φl
α, Φl

β) : Dk+l
α,β → X×Y.

Here we use the fact that Dk+l
α,β ≡ Dk

α × Dl
β topologically.

Example 12.18. Cellular decomposition for S1 × S1.

•

•

•

=

• •

• •

= •

FIGURE 22. Cellular decomposition for S1 × S1

This natural cellular structure is closure finite. However, the product topology on X × Y may not be the
same as the weak topology, so the topological product may not be a CW complex. Observe that X, Y are
compactly generated weak Hausdorff, and we can take their categorical product in the category T . Then
this compactly generated product will have the weak topology, and becomes a CW complex.

By Proposition 7.8, we have the following useful criterion.

Theorem 12.19. Let X.Y be CW complexes and Y be locally compact. Then the topological product X × Y is a CW
complex.

Example 12.20. If X is a CW complex, then X× I is a CW complex.

Definition 12.21. A CW complex X is called locally finite if each point in X has an open neighborhood that
intersects only finite many cells.

It is easy to see that locally finite CW complexes are locally compact Hausdorff.

Corollary 12.22. Let X.Y be CW complexes and Y be locally finite. Then the topological product X × Y is a CW
complex.
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13 WHITEHEAD THEOREM AND CW APPROXIMATION

Relative homotopy group

Definition 13.1. We define the category TopP of topological pairs where an object (X, A) is a topological
space X with a subspace A, and morphisms (X, A) → (Y, B) are continuous maps f : X → Y such that
f (A) ⊂ B. A homotopy between two maps f1, f2 : (X, A) → (Y, B) is a homotopy F : X × I → Y between
f0, f1 such that F|X×t(A) ⊂ B for any t ∈ I.

The quotient category of TopP by homotopy of maps is denoted by hTopP. The pointed versions are
defined similarly and denoted by TopP? and hTopP?. Morphisms in hTopP and hTopP? are denoted by

[(X, A), (Y, B)], [(X, A), (Y, B)]0.

When we work with the convenient category T , we have similar notions of T P for a pair of spaces,
hT P for the quotient homotopy category, and T P?, hT P? for the pointed cases.

Theorem 13.2. Let f : (X, A)→ (Y, B) in hT P?. Let f̄ = f |A. Then the sequence

(X, A)→ (Y, B)→ (C f , C f̄ )→ Σ(X, A)→ Σ(Y, B)→ Σ(C f , C f̄ )→ Σ2(X, A)→ · · ·

is co-exact in hT P?.

This generalizes the co-exact Puppe sequence to the pair case. See [Spanier] for a proof.

Definition 13.3. Let (X, A) ∈ T P?. We define the relative homotopy group πn(X, A) by

πn(X, A) = [(Dn, Sn−1), (X, A)]0.

We will also write πn(X, A; x0) when we want to specify the base point.

Note that
(Dn, Sn−1) ' Σn−1(D1, S0), n ≥ 2.

Therefore πn(X, A) is a group for n ≥ 2 due to the adjunct pair (Σ, Ω).

Lemma 13.4. f : (Dn, Sn−1) → (X, A) is zero in πn(X, A) if and only if f is homotopic rel Sn−1 to a map whose
image lies in A.

Proof. Assume [ f ]0 = 0 in πn(X, A). Then we can find a homotopy

F : Dn × I → X such that F(−, 0) = x0, F(Sn−1, t) ⊂ A, F(−, 1) = f (−).

Let us view the restriction of F to Sn−1 × I ∪ Dn × {0} as defining a map (via a natural homeomorphism)

g : (Dn, Sn−1)→ (X, A).

Then F can be viewed as defining a homotopy g ' f rel Sn−1 as required.

Conversely, assume there exists g : (Dn, Sn−1)→ (X, A) such that g ' f rel Sn−1. Let

F : Dn × I → Dn

be a homotopy from the identity to the trivial map. Then the homotopy

F ◦ g : Dn × I → X

shows that [g]0 = 0, hence [ f ]0 = 0 as well.

�
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13 WHITEHEAD THEOREM AND CW APPROXIMATION

This lemma can be illustrated by the following diagram

Sn−1
� _

��

// A� _

��
Dn ''

f
77��

g
==

X

Here g maps Dn to A and g ' f rel Sn−1.

Theorem 13.5. Let A ⊂ X in T?. Then there is a long exact sequence

· · · → πn(A)
i∗→ πn(X)

j∗→ πn(X, A)
∂→ πn−1(A) · · · → π0(X)

Here the boundary map ∂ sends ϕ ∈ [(Dn, Sn−1), (X, A)]0 to its restriction to Sn−1.

Proof. Consider

f : (S0, {0})→ (S0, S0).

Let f̄ = f |{0} : {0} → S0. It is easy to see that

(C f , C f̄ ) ' (D1, S0).

Since Σn(S0) = Sn, Σ(Dn, Sn−1) = (Dn+1, Sn), the co-exact Puppe sequence

(S0, {0})→ (S0, S0)→ (D1, S0)→ (S1, {0})→ (S1, S1)→ (D2, S1)→ (S2, {0})→ · · ·

implies the exact sequence

· · · → πn(A)
i∗→ πn(X)

j∗→ πn(X, A)
∂→ πn−1(A) · · · → π0(X)

�

Definition 13.6. A pair (X, A) is called n-connected (n ≥ 0) if π0(A)→ π0(X) is surjective and

πk(X, A; x0) = 0 ∀1 ≤ k ≤ n, x0 ∈ A.

From the long exact sequence

· · · → πn(A)
i∗→ πn(X)

j∗→ πn(X, A)
∂→ πn−1(A) · · · → π0(X)

we see that (X, A) is n-connected if and only if for any x0 ∈ Aπr(A, x0)→ πr(X, x0) is bijective for r < n

πn(A, x0)→ πn(X, x0) is surjective

Definition 13.7. A map f : X → Y is called an n-equivalence (n ≥ 0) if for any x0 ∈ X f∗ : πr(X, x0)→ πr(Y, f (x0)) is bijective for r < n

f∗ : πn(X, x0)→ πn(Y, f (x0)) is surjective

f is called a weak homotopy equivalence or ∞-equivalence if f is n-equivalence for any n ≥ 0.

Example 13.8. For any n ≥ 0, the pair (Dn+1, Sn) is n-connected.
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13 WHITEHEAD THEOREM AND CW APPROXIMATION

Whitehead Theorem

Lemma 13.9. Let X be obtained from A by attaching n-cells. Let (Y, B) be a pair such thatπn(Y, B; b) = 0, ∀b ∈ B if n ≥ 1

π0(B)→ π0(Y) is surjective if n = 0.

Then any map from (X, A)→ (Y, B) is homotopic rel A to a map from X to B.

Proof. This follows from the universal property of push-out and Lemma 13.4.

ä Sn−1 //
� _

��

A� _

��

// B� _

��
ä Dn //

66

X
&&
88��

@@

Y

�

Theorem 13.10. Let (X, A) be a relative CW complex with relative dimension ≤ n. Let (Y, B) be n-connected
(0 ≤ n ≤ ∞). Then any map from (X, A) to (Y, B) is homotopic relative to A to a map from X to B.

A� _

��

// B� _

��
X

&&
88��

??

Y

Proof. Apply the previous Lemma to

A ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

and observe that all embeddings are cofibrations. �

Proposition 13.11. Let f : X → Y be a weak homotopy equivalence, P be a CW complex. Then

f∗ : [P, X]→ [P, Y]

is a bijection.

Proof. We can assume f is an embedding and (Y, X) is ∞-connected. Otherwise replace Y by M f .

Surjectivity is illustrated by the diagram (applying Theorem 13.10 to the pair (P, ∅))

∅� _

��

// X� _

��
P

&&
88��

??

Y

Injectivity is illustrated by the diagram (observing P× I, P× ∂I are CW complexes)

P× ∂I� _

��

// X� _

��
P× I

''
77��

<<

Y
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�

Theorem 13.12 (Whitehead Theorem). A map between CW complexes is a weak homotopy equivalence if and only
if it is a homotopy equivalence.

Proof. Let f : X → Y be a weak homotopy equivalence between two CW complexes. Apply Proposition
13.11 to P = X and P = Y, we find bijections

f∗ : [X, X]→ [X, Y], f∗ : [Y, X]→ [Y, Y].

Let g ∈ [Y, X] such that f∗[g] = 1Y. Then f ◦ g ' 1Y. On the other hand,

f∗[g ◦ f ] = [ f ◦ g ◦ f ] ' [ f ◦ 1] = [ f ] = f∗[1X ].

We conclude [g ◦ f ] = 1X . Therefore f is a homotopy equivalence. The reverse direction is obvious. �

Remark 13.13. This is basically the combination of Proposition 13.11 and Yoneda Lemma.

Cellular Approximation

Definition 13.14. Let (X, Y) be CW complexes. A map f : X → Y is called cellular if f (Xn) ⊂ Yn for any
n. We define the category CW whose objects are CW complexes and morphisms are cellular maps.

Definition 13.15. A cellular homotopy between two cellular maps X → Y of CW complexes is a homotopy
X × I → Y that is itself a cellular map. Here I is naturally a CW complex. We define the quotient category
hCW of CW whose morphisms are cellular homotopy class of cellular maps.

Lemma 13.16. Let X be obtained from A by attaching n-cells (n ≥ 1), then (X, A) is (n− 1)-connected.

Proof. Let r < n. Consider a diagram

Sr−1
� _

��

// A� _

��
Dr f

// X

Since Dr is compact, f (Dr) meets only finitely many attached n-cells on X, say e1, · · · , em. Let pi be the
center of ei. Let e∗i = ei − {pi}. Y = X − {p1, · · · , pm}. We subdivide Dr into small disks Dr = ∪αDr

α

such that f (Dr
α) ⊂ Y or f (Dr

α) ⊂ ei. For each Dr
α such that f (Dr

α) ⊂ ei but not in Y, we use the fact that
(ei, e∗i ) ' (Dn, Sn−1) is (n− 1)-connected to find a homotopy rel ∂Dr

α to adjust mapping Dr
α into e∗i . It glues

together to obtain

Sr−1
� _

��

// Y� _

��
Dr ''

77��

==

X

Then we can further find a homotopy

Sr−1
� _

��

// A� _

��
Dr &&

88��

==

Y

�
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Corollary 13.17. Let (X, A) be a relative CW complex, then for any n ≥ 0, the pair (X, Xn) is n-connected.

Theorem 13.18. Let f : (X, A)→ (X̃, Ã) between relative CW complexes which is cellular on a subcomplex (Y, B)
of (X, A). Then f is homotopic rel Y to a cellular map g : (X, A)→ (X̃, Ã).

Proof. Assume we have constructed fn−1 : (X, A) → (X̃, Ã) which is homotopic to f rel Y and cellular on
the (n− 1)-skeleton Xn−1. Let Xn be obtained from Xn−1 by attaching n-cells. Consider

Xn−1
� _

��

// X̃n
� _

��
Xn fn−1 // X̃

Since Xn is obtained from Xn−1 by attaching n-cells and (X̃, X̃n) is n-connected,

Xn−1
� _

��

// X̃n
� _

��
Xn ''

fn−1

77��

<<

X̃

we can find a homotopy rel Xn−1 from fn−1|Xn : Xn → X̃ to a map Xn → X̃n. Since f is cellular on Y,
we can choose this homotopy rel Y by adjusting only those n-cells not in Y. This homotopy extends to a
homotopy rel Xn−1 ∪Y from fn−1 to a map fn : X → X̃ since Xn ⊂ X is a cofibration. Then f∞ works. �

Theorem 13.19 (Cellular Approximation Theorem). Any map between relative CW complexes is homotopic to a
cellular map. If two cellular maps between relative CW complexes are homotopic, then they are cellular homotopic.

Proof. Apply the previous Theorem to (X, ∅) and (X× I, X× ∂I). �

This theorem says that hCW is a full subcategory of hTop.

CW Approximation

Definition 13.20. A CW approximation of a topological space Y is a CW complex X with a weak homotopy
equivalence f : X → Y.

Theorem 13.21. Any space has a CW approximation.

Proof. We may assume Y is path connected. We construct a CW approximation X of Y by induction on the
skeleton Xn. Assume we have constructed fn : Xn → Y which is an n-equivalence. We attach an (n+ 1)-cell
to every generator of ker(πn(Xn)→ πn(Y)) to obtain X̃n+1. We can extend fn to a map f̃n+1 : X̃n+1 → Y

ä Sn
� _

��

// Xn

��
fn

��

ä Dn+1 //

))

X̃n+1

f̃n+1

!!
Y

Since (X̃n+1, Xn) is also n-connected, f̃n+1 is an n-equivalence. By construction and the surjectivity of
πn(Xn)→ πn(X̃n+1), f̃n+1 defines also an isomorphism for πn(X̃n+1)→ πn(Y).
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13 WHITEHEAD THEOREM AND CW APPROXIMATION

Now for every generator Sn+1
α of coker(πn+1(X̃n+1)→ πn+1(Y)), we take a wedge sum to obtain

Xn+1 = X̃n+1 ∨ (∨αSn+1).

Then the induced map fn+1 : Xn+1 → Y extends fn to an (n + 1)-equivalence. Inductively we obtain a
weak homotopy equivalence f∞ : X = X∞ → Y. �

Theorem 13.22. Let f : X → Y. Let ΓX → X, and ΓY → Y be CW approximations. Then there exists a unique
map in [ΓX, ΓY] making the following diagram commutative in hTop

ΓX

��

Γ f
// ΓY

��
X

f
// Y

Proof. Weak homotopy equivalence of ΓY → Y implies the bijection [ΓX , ΓY]→ [ΓX , Y].

�

Definition 13.23. Two spaces X1, X2 are said to have the same weak homotopy type if there exist a space
Y and weak homotopy equivalences fi : Y → Xi, i = 1, 2.

Theorem 13.24. Weak homotopy type is an equivalence relation.

Proof. Exercise.

�
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14 EILENBERG-MACLANE SPACE

πn(Sn) and Degree

We have seen that πk(Sn) = 1 for k < n. In this subsection we compute

πn(Sn) = [Sn, Sn]0 ∼= Z.

Given f : Sn → Sn, its class [ f ] ∈ Z under the above isomorphism is called the degree of f .

Theorem 14.1 (Homotopy Excision Theorem). Let (A, C), (B, C) be relative CW complex. Let X be the push-out

C //

��

B

��
A // X

If (A, C) is m-connected and (B, C) is n-connected, then

πi(A, C)→ πi(X, B)

is an isomorphism for i < m + n, and a surjection for i = m + n.

Corollary 14.2 (Freudenthal Suspension Theorem). The suspension map

πi(Sn)→ πi+1(Sn+1)

is an isomorphism for i < 2n− 1 and a surjection for i = 2n− 1.

Sn−1

A

B

Proof. Apply Homotopy Excision to X = Sn+1, C = Sn, A the upper half disk, B the lower half disk. �

Freudenthal Suspension Theorem holds similarly replacing Sn by general (n− 1)-connected space.

Proposition 14.3. πn(Sn) ∼= Z for n ≥ 1.

Proof. Freudenthal Suspension Theorem reduces to show π2(S2) ∼= Z. This follows from the Hopf fibration

S1 → S3 → S2.

�
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Eilenberg-MacLane Space

Definition 14.4. An Eilenberg-MacLane Space of type (G, n) is a CW complex X such that πn(X) ∼= G and
πk(X) = 0 for k 6= n. Here G is abelian if n > 1.

As we will show next, Eilenberg-MacLane Space of any type (G, n) exists and is unique up to homotopy.
It will be denoted by K(G, n). The importance of K(G, n) is that it is the representing space for cohomology
functor with coefficients in G

Hn(X; G) ∼= [X, K(G, n)] for any CW complex X.

Theorem 14.5. Eilenberg-MacLane Spaces exist.

Proof. We prove the case for n ≥ 2. There exists an exact sequence

0→ F1 → F2 → G → 0

where F1, F2 are free abelian groups. Let Bi be a basis of Fi. Let

A =
∨

i∈B1

Sn, B =
∨

j∈B2

Sn.

A, B are (n− 1)-connected and πn(A) = F1, πn(B) = F2. Using the degree map, we can construct

f : A→ B

such that πn(A) → πn(B) realizes the map F1 → F2. Let X be obtained from B by attaching (n + 1)-cells
via f . Then X is (n− 1)-connected and πn(X) = G. Now we proceed as in the proof of Theorem 13.21 to
attach cells of dimension ≥ (n + 2) to kill all higher homotopy groups of X to get K(G, n). �

Theorem 14.6. Let X be an (n− 1)-connected CW complex. Let Y be an Eilenberg-MacLane Space of type (G, n).
Then the map

φ : [X, Y]→ Hom(πn(X), πn(Y)), f → f∗

is a bijection. In particular, any two Eilenberg-MacLane Spaces of type (G, n) are homotopy equivalent.

Proof. Let us first do two simplifications. First, as in the proof of Theorem 13.21, we can find a CW complex
Z and a weak homotopy equivalence g : Z → X such that the n-skeleton of Z is

Zn =
∨
j∈J

Sn.

By Whitehead Theorem, g is also a homotopy equivalence. So we can assume the n-skeleton of X is

Xn =
∨
j∈J

Sn.

Secondly, let Xn+1 be the (n + 1)-skeleton of X. Then πn(X) = πn(Xn+1). Let f : X → Y. Since X
is obtained from Xn+1 by attaching cells of dimension ≥ n + 2 and πk(Y) = 0 for all k > n, any map
Xn+1 → Y can be extended to X → Y. So the natural map

[X, Y]→ [Xn+1, Y]

is a surjection. Now assume f : X → Y such that its restriction to Xn+1 is null-homotopic. Since Xn+1 ⊂ X
is a cofibration, f is homotopic to a map which shrinks the whole Xn+1 to a point. Since πk(Y) = 0 for all
k > n, f is further null-homotopic. This implies that

[X, Y]→ [Xn+1, Y]
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is a bijection. So we can also assume X = Xn+1 has dimension at most n + 1.

Assume X is obtained from Xn by attaching (n + 1)-cells via the map

χ :
∨
i∈I

Sn →
∨
j∈J

Sn.

• Injectivity of φ. Assume f : X → Y such that φ( f ) = 0. Then the restriction of f to

Xn =
∨
j∈J

Sn → Y

is null-homotopic. Since Xn ↪→ X is a cofibration, f is homotopic to a map which shrinks Xn to a
point, so can be viewed as a map ∨

i∈I
Sn+1 → Y.

Since πn+1(Y) = 0, this map is also null-homotopic. This shows [ f ] = 0.
• Surjectivity of φ. Let g : πn(X)→ πn(Y) be a group homomorphism. Since

j : πn(Xn)→ πn(X)

is surjective and πn(Xn) is free, we can find a map

fn : Xn → Y

such that fn∗ : πn(Xn) → πn(Y) coincides with g ◦ j. By construction, fn ◦ χ is null-homotopic, so
we can extend fn to a map f : X → Y which gives the required group homomorphism.

Now assume we have two Eilenberg-MacLane Spaces Y1, Y2 of type (G, n). We have the identification

[Y1, Y2] = Hom(πn(Y1), πn(Y2)).

Then a group isomorphism πn(Y1)→ πn(Y2) gives a homotopy equivalence Y1 → Y2. �

Remark 14.7. A classical result of Milnor says the loop space of a CW complex is homotopy equivalent to a
CW complex. Since for any X, we have πk(ΩX) = πk+1(X). Therefore

ΩK(G, n) ' K(G, n− 1).

Example 14.8. S1 = K(Z, 1) and
∨m

i=1 S1 = K(Zm, 1).

Example 14.9. Consider the fibration

S1 → S2n+1 → CPn.

We have natural embeddings

CP0 ⊂ CP1 ⊂ · · ·CPn−1 ⊂ CPn ⊂ · · · ⊂ CP∞

and

S1 ⊂ S3 ⊂ · · · S2n−1 ⊂ S2n+1 ⊂ · · · ⊂ S∞.

Here CP∞ and S∞ are the corresponding colimits. This gives rise to the fibration

S1 → S∞ → CP∞.

Observe that πk(S∞) = 0 for any k. In fact, for any map f : Sk → S∞, since Sk is compact,

f (Sk) ⊂ Sn, for some n > k.
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Since πk(Sn) = 0, f is homotopic to the trivial map in Sn, hence also in S∞. Using the long exact sequence
of homotopy groups associated to the fibration S1 → S∞ → CP∞, we find

CP∞ = K(Z, 2).

Example 14.10. A knot is an embedding K : S1 ↪→ S3. Let G = π1(S3 − K). Then

S3 − K = K(G, 1).

Postnikov Tower

Postnikov tower for a space is a decomposition dual to a cell decomposition. In the Postnikov tower
description of a space, the building blocks of the space are Eilenberg-MacLane spaces.

Definition 14.11. A Postnikov tower of a path-connected space X is a tower diagram of spaces

· · · Xn+1 Xn · · · X2 X1 .

with a sequence of compatible maps fn : X → Xn satisfying

1◦. fn : X → Xn induces an isomorphism πk(X)→ πk(Xn) for any k ≤ n
2◦. πk(Xn) = 0 for k > n
3◦. each Xn → Xn−1 is a fibration with fiber K(πn(X), n).

Xn

��

K(πn(X), n)oo

X

fn
==

fn−1

// Xn−1

Xn is called a n-th Postnikov approximation of X.

Note that if X is (n− 1)-connected, then Xn = K(πn(X), n). In general, a Postnikov tower can be viewed
as an approximation of a space by twisted product of Eilenberg-MacLane spaces.

Theorem 14.12. Postnikov Tower exists for any connected CW complex.

Proof. Let X be a connected CW complex. Let us construct Yn which is obtained from X by successively
attaching cells of dimensions n + 2, n + 3, · · · to kill homotopy groups πk(X) for k > n. Then we have a
CW subcomplex X ⊂ Yn such thatπk(X)→ πk(Yn) is an isomorphism if k ≤ n

πk(Yn) = 0 if k > n.

Since πk(Yn−1) = 0 for k ≥ n, we can extend the map X → Yn−1 to a map Yn → Yn−1 making the
following diagram commutative

X

�� !!
Yn // Yn−1
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In this way we find a tower diagram

X

· · · Yn+1 Yn · · · Y2 Y1

.

Now we can replace Y2 → Y1 by a fibration, and then similarly adjust Y3, Y4, · · · successively to end up with

X

· · · Yn+1 Yn · · · Y2 Y1

· · · Xn+1 Xn · · · X2 X1 = Y1

.

such that each Xn → Xn−1 is a fibration with fiber Fn. Since Xn is homotopy equivalent to Yn, we haveπk(Xn) = πk(X) if k ≤ n

πk(Xn) = 0 if k > n.

Then the long exact sequence of homotopy groups associated to the fibration Fn → Xn → Xn−1 implies

Fn ' K(πn(X), n).

�

Whitehead Tower

Whitehead Tower is a sequence of fibrations that generalize the universal covering of a space.

Theorem 14.13 (Whitehead Tower). Let X be a connected CW complex. There is a sequence of maps

· · · Xn+1 Xn · · · X2 X1 X0 = X

where each map Xn → Xn−1 is a fibration with fiber K(πn(X), n− 1). Each Xn satisfiesπk(Xn)→ πk(X) is an isomorphism if k > n

πk(Xn) = 0 if k ≤ n.

Proof. Let Y1 ' K(π1(X), 1) be obtained from X by successively attaching cells to kill πk(X) for k > 1. Let
j1 : X ⊂ Y1 and X1 = Fj1 be the homotopy fiber. Then we have a fibration

ΩY1 // X1

��
X

Note that ΩY1 ' K(π1(X), 0) and π1(X1) = 0. So X1 can be viewed as the universal cover of X up to
homotopy equivalence.

Similarly, assume we have constructed the Whitehead Tower up to Xn. Let Yn ' K(πn(X), n) be obtained
from Xn by killing homotopy groups πk(X) for k > n. Let jn : Xn ⊂ Yn. Then we define Xn+1 = Fjn to be
the homotopy fiber. Repeating this process, we obtain the Whitehead Tower. �
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Chain complex

Definition 15.1. Let R be a commutative ring. A chain complex over R is a sequence of R-module maps

· · · → Cn+1
∂n+1→ Cn

∂n→ Cn−1 → · · ·

such that ∂n ◦ ∂n+1 = 0 ∀n. When R is not specified, we mean chain complex of abelian groups (i.e. R = Z).

Sometimes we just write the map by ∂ and the chain complex by (C•, ∂). Then ∂n = ∂|Cn and ∂2 = 0.

Definition 15.2. A chain map f : C• → C′• between two chain complexes over R is a sequence of R-module
maps fn : Cn → C′n such that the following diagram is commutative

· · · // Cn+1

fn+1
��

∂n+1 // Cn

fn
��

∂n // Cn−1

fn−1
��

// · · ·

· · · // C′n+1
∂′n+1

// C′n
∂′n

// C′n−1
// · · ·

This can be simply expressed as

f ◦ ∂ = ∂′ ◦ f

Definition 15.3. We define the category Ch•(R) whose objects are chain complexes over R and morphisms
are chain maps. We simply write Ch• when R = Z.

Definition 15.4. Given a chain complex (C•, ∂), we define its n-cycles Zn and n-boundaries Bn by

Zn = Ker(∂ : Cn → Cn−1), Bn = Im(∂ : Cn+1 → Cn).

The equation ∂2 = 0 implies Bn ⊂ Zn. We define the n-th homology group by

Hn(C•, ∂) :=
Zn

Bn
=

ker(∂n)

im(∂n+1)
.

A chain complex C• is called acyclic or exact if Hn(C•) = 0 for any n.

Proposition 15.5. The n-th homology group defines a functor

Hn : Ch• → Ab .

Proof. We only need to check any f : C• → C′• induces a group homomorphism

f∗ : Hn(C•)→ Hn(C′•).

This is because

• if α ∈ Zn(C•), then f (α) ∈ Zn(C′•);
• if α ∈ Bn(C•), then f (α) ∈ Bn(C′•).

�

Definition 15.6. A chain map f : C• → D• is called a quasi-isomorphism if

f∗ : Hn(C•)→ Hn(D•)

is an isomorphism for all n.
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Definition 15.7. A chain homotopy f
s' g between two chain maps f , g : C• → C′• is a sequence of

homomorphisms sn : Cn → C′n+1 such that fn − gn = sn−1 ◦ ∂n + ∂′n+1 ◦ sn, or simply

f − g = s ◦ ∂ + ∂′ ◦ s .

Two complexes C•, C′• are called chain homotopy equivalent if there exist chain maps f : C• → C′• and
h : C′• → C• such that f ◦ g ' 1 and g ◦ f ' 1.

Proposition 15.8. Chain homotopy defines an equivalence relation on chain maps and compatible with compositions.

In other words, chain homotopy defines an equivalence relation on Ch•. We define the quotient category

hCh• = Ch• / ' .

Chain homotopy equivalence becomes an isomorphism in hCh•.

Proposition 15.9. Let f , g be chain homotopic chain maps. Then they induce identical map on homology groups

Hn( f ) = Hn(g) : Hn(C•)→ Hn(C′•).

In other words, the functor Hn factors through

Hn : Ch• → hCh• → Ab .

Proof. Let f − g = s ◦ ∂ + ∂′ ◦ s. Consider

f∗ − g∗ : Hn(C•)→ Hn(C′•).

Let α ∈ Cn be a representative of a class [α] in Hn(C•). Since ∂α = 0, we have

( f − g)(α) = (s ◦ ∂ + ∂′ ◦ s)(α) = ∂′ ◦
(
s(α)

)
∈ Bn(C′•).

So [ f (α)] = [g(α)]. Hence f∗ = g∗ on homologies. �

Singular homology

Definition 15.10. We define the standard n-simplex

∆n = {(t0, · · · , tn) ∈ Rn+1|
n

∑
i=0

ti = 1, ti ≥ 0}

We let {v0, · · · , vn} denote its vertices. Here vi = (0, · · · , 0, 1, 0, · · · , 0) where 1 sits at the i-th position.

v0

v2

v1

x

z

y

v0

v2

v1

v3

v1

FIGURE 23. Standard 2-simplex ∆2 and 3-simplex ∆3
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Definition 15.11. Let X be a topological space. A singular n-simplex in X is a continuous map σ : ∆n → X.
For each n ≥ 0, we define Sn(X) to be the free abelian group generated by all singular n-simplexes in X

Sn(X) =
⊕

σ∈Hom(∆n ,X)

Zσ.

An element of Sn(X) is called a singular n-chain in X.

A singular n-chain is given by a finite formal sum

γ = ∑
σ∈Hom(∆n ,X)

mσσ,

for mσ ∈ Z and only finitely many mσ’s are nonzero. The abelian group structure is:

−γ := ∑
σ

(−mσ)σ

and

(∑
σ

mσσ) + (∑
σ

m′σσ) = ∑
σ

(mσ + m′σ)σ.

Definition 15.12. Given a singular n-simplex σ : ∆n → X and 0 ≤ i ≤ n, we define

∂(i)σ : ∆n−1 → X

to be the (n− 1)-simplex by restricting σ to the i-th face of ∆n whose vertices are given by {v0, v1, · · · , v̂i, · · · , vn}.
We define the boundary map

v0

∂(1)∆2

v2

v1

x

z

y

v0

v2

v1

v3

v1

∂(3)∆3

FIGURE 24. Faces of 2-simplex ∆2 and 3-simplex ∆3

∂ : Sn(X)→ Sn−1(X)

to be the abelian group homomorphism generated by

∂σ :=
n

∑
i=0

(−1)i∂(i)σ .

Given a subset {vi1 , · · · , vik} of the vertices of ∆n, we will write

σ|[vi1 , · · · , vik ] or just [vi1 , · · · , vik ] (when it is clear from the context)

for restricting σ to the face of ∆n spanned by {vi1 , · · · , vik}. Then the boundary map can be expressed by

∂[v0, · · · , vn] =
n

∑
i=0

(−1)i[v0, v1, · · · , v̂i, · · · , vn].
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Proposition 15.13. (S•(X), ∂) defines a chain complex, i.e., ∂2 = ∂ ◦ ∂ = 0.

Proof.

∂ ◦ ∂[v0, · · · , vn] = ∂
n

∑
i=0

(−1)i[v0, v1, · · · , v̂i, · · · , vn]

= ∑
i<j

(−1)i(−1)j+1[v0, · · · , v̂i, · · · , v̂j, · · · , vn] + ∑
j<i

(−1)i(−1)j[v0, · · · , v̂j, · · · , v̂i, · · · , vn]

= 0.

�

Example 15.14. Consider a 2-simplex σ : ∆2 → X. Then

∂σ = [v1, v2]− [v0, v2] + [v0, v1]

and
∂2σ = ([v2]− [v1])− ([v2]− [v0]) + ([v1]− [v0]) = 0.

Definition 15.15. For each n ≥ 0, we define the n-th singular homology group of X by

Hn(X) := Hn(S•(X), ∂) .

Let f : X → Y be a continuous map, which gives a chain map

S•( f ) : S•(X)→ S•(Y).

This defines the functor of singular chain complex

S• : Top→ Ch• .

Singular homology group can be viewed as the composition of functors

Top S•→ Ch•
Hn→ Ab .

Proposition 15.16. Let f , g : X → Y be homotopic maps. Then

S•( f ), S•(g) : S•(X)→ S•(Y)

are chain homotopic. In particular, they induce identical map

Hn( f ) = Hn(g) : Hn(X)→ Hn(Y).

Proof. We only need to prove that for i0, i1 : X → X× I, the induced map

S•(i0), S•(i1) : S•(X)→ S•(X× I)

are chain homotopic. Then their composition with the homotopy X× I → Y gives the proposition.

Let us define a homotopy
s : Sn(X)→ Sn+1(X× I).

For σ : ∆n → X, we define (topologically)

s(σ) : ∆n × I σ×1→ X× I.

Here we treat ∆n × I as a collection of (n + 1)-simplexes as follows. Let {v0, · · · , vn} denote the vertices of
∆n. The vertices of ∆n × I contain two copies {v0, · · · , vn} and {w0, · · · , wn}. Then

∆n × I =
n

∑
i=0

(−1)i[v0, v1, · · · vi, wi, wi+1, · · · , wn]
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cuts ∆n × I into (n + 1)-simplexes. Its sum defines s(σ) ∈ Sn+1(X× I).

v0 v1

v2

w0 w1

w2

=

v0 v1

v2

w0 w1

w2

−
v0 v1

v2

w0 w1

w2

+

v0 v1

v2

w0 w1

w2

FIGURE 25. Decomposition of ∆n × I for n = 2

The following intuitive formula holds

∂(∆n × I) = ∆× ∂I − (∂∆n)× I

as an equation for singular chains. This leads to the chain homotopy

S•(i1)− S•(i0) = ∂ ◦ s + s ◦ ∂.

�

Theorem 15.17. Singular homologies are homotopy invariants. They factor through

Hn : hTop→ hCh• → Ab .

Dimension Axiom

Theorem 15.18 (Dimension Axiom). If X is a contractible, then

Hn(X) =

0 n > 0

Z n = 0

Proof. We can assume X is one point. For each n ≥ 0, there is only one σn : ∆n → X. Therefore

Sn(X) = Z 〈σn〉 .

The boundary operator is

∂ 〈σn〉 =
n

∑
i=0

(−1)i 〈σn−1〉 =

0 n = odd

σn−1 n = even.

The singular chain complex of X becomes

· · ·Z 1→ Z
0→ Z

1→ Z→ Z→ 0

which implies the theorem. �
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Some Algebraic tools

We collect several useful propositions in dealing with chain complexes. The proofs are left to the readers.

Proposition 15.19 (Five Lemma). Consider the commutative diagram of abelian groups with exact rows

A1 //

f1
��

A2

f2
��

// A3 //

f3
��

A4 //

f4
��

A5

f5
��

B1 // B2 // B3 // B4 // B5

Then

1◦. If f2, f4 are surjective and f5 is injective, then f3 is surjective.
2◦. If f2, f4 are injective and f1 is surjective, then f3 is injective.
3◦. If f1, f2, f4, f5 are isomorphisms, then f3 is an isomorphism.

Definition 15.20. Let f : (C•, ∂)→ (C′•, ∂′) be a chain map. The mapping cone of f is the chain complex

cone( f )n = Cn−1 ⊕ C′n

with the differential

d : cone( f )n → cone( f )n−1, (cn−1, c′n)→ (−∂(cn−1), ∂′(c′n)− f (cn−1)).

Proposition 15.21. Let f : (C•, ∂)→ (C′•, ∂′) be a chain map.

1◦. There is an exact sequence

0→ C′• → cone( f )• → C[−1]• → 0

Here C[−1]• is the chain complex with C[−1]n := Cn−1 and differential −∂ where ∂ is the differential in C.
2◦. f is a quasi-isomorphism if and only if cone( f )• is acyclic.
3◦. Let j : C′• ↪→ cone( f )• be the embedding above. Then cone(j)• is chain homotopic equivalent to C[−1]•.

In homological algebra, a chain map f : (C•, ∂)→ (C′•, ∂′) leads to a triangle

C•
f

// C′•

j{{
cone( f )•

cc

Here the dotted arrow is a chain map from cone( f )• to the shifted one C[−1]•.

The above proposition says C[−1]• can be identified with cone(j) (up to chain homotopy). So we can
rotate the above triangle and still get another triangle

C′•
j

// cone( f )•

yy
C•[−1]

bb

This is closely related to the cofiber exact sequence. cone( f )• is the analogue of homotopy cofiber of f .
C•[−1] is the analogue of the suspension. Then the above triangle structure can be viewed as

C•
f→ C′• → cone( f )• → C•[−1]

f [−1]→ C′• → · · ·
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Exact homology sequence

Definition 16.1. Chain maps 0→ C′•
i→ C•

p→ C′′• → 0 is called a short exact sequence if for each n

0→ C′n
i→ Cn

p→ C′′n → 0

is an exact sequence of abelian groups.

We have the following commuting diagram

�� �� ��
0 // C′n+1

i //

∂′

��

Cn+1
p
//

∂

��

C′′n+1

∂′′

��

// 0

0 // C′n
i //

∂′

��

Cn
p
//

∂

��

C′′n

∂′′

��

// 0

0 // C′n−1
i //

∂′

��

Cn−1
p
//

∂

��

C′′n−1

∂′′

��

// 0

Lemma/Definition 16.2. Let 0→ C′•
i→ C•

p→ C′′• → 0 be a short exact sequence. There is a natural homomorphism

δ : Hn(C′′• )→ Hn−1(C′•)

called the connecting map. It induces a long exact sequence of abelian groups

· · · → Hn(C′•)
i∗→ Hn(C•)

p∗→ Hn(C′′• )
δ→ Hn−1(C′•)

i∗→ Hn−1(C•)
p∗→ Hn−1(C′′• )→ · · ·

The connecting map δ is natural in the sense that a commutative diagram of complexes with exact rows

0 // C′• //

��

C• //

��

C′′• //

��

0

0 // D′• // D• // D′′• // 0

induces a commutative diagram of abelian groups with exact rows

· · · // Hn(C′′• ) //

��

Hn(C•) //

��

Hn(C′′• )

��

δ // Hn−1(C′•) //

��

· · ·

· · · // Hn(D′′• ) // Hn(D•) // Hn(D′′• )
δ // Hn−1(D′•) // · · ·

Proof. We first describe the construction of δ. Given a class [α] ∈ Hn(C′′• ), let α ∈ C′′n be a representative.
Since Cn → C′′n is surjective, we can find β ∈ Cn such that p(β) = α. Consider ∂β. Since

p(∂β) = ∂(p(β)) = ∂α = 0,

there exists a unique element in γ ∈ C′n−1 such that i(γ) = ∂β. Since

i(∂(γ)) = ∂(i(γ)) = ∂2(β) = 0
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and i is injective, we find ∂(γ) = 0. This is illustrated by chasing the following diagram

β //

��

α

��
γ

��

// ∂β // 0

0

γ defines a class [γ] ∈ Hn−1(C′•). We next show that this class does not depend on the choice of the
lifting β and the choice of the representative α.

• Choice of β. Suppose we choose another β̃ such that p(β̃) = α. Then there exists x ∈ C′n such that

β̃ = β + i(x).

It follows that γ̃ = γ + ∂x, so [γ̃] = [γ].
• Choice of α. Suppose we choose another representative α̃ = α + ∂x of the class [α]. We can choose a

lifting β̃ = β + ∂y of α̃ where p(y) = x. Since ∂β̃ = ∂β, we have γ̃ = γ.

Therefore we have a well-defined map δ : Hn(C′′• )→ Hn−1(C′•) by

δ[α] = [γ].

We next show the exactness of the sequence

· · · → Hn(C′•)
i∗→ Hn(C•)

p∗→ Hn(C′′• )
δ→ Hn−1(C′•)

i∗→ Hn−1(C•)
p∗→ Hn−1(C′′• )→ · · ·

• Exactness at Hn(C•).
im(i∗) ⊂ ker(p∗) is obvious. If [α] ∈ Hn(C•) such that [p(α)] = 0, so p(α) = ∂x. Let y ∈ Cn+1 be

a lifting of x so p(y) = x. Since p(α− ∂y) = 0, α− ∂y = i(β) for some β ∈ C′n. Then ∂β = 0 and

i∗([β]) = [α] which implies ker(p∗) ⊂ im(i∗).

• Exactness at Hn(C′′• ).
Assume [α] = p∗[β], then β is a lift of α and ∂β = 0. So δ[α] = 0. This shows

im(p∗) ⊂ ker(δ).

On the other hand, if δ[α] = 0. We can find a lift β of α such that ∂β = 0. Then [α] = p∗[β]. Hence

ker(δ) ⊂ im(p∗).

• Exactness at Hn−1(C′•).
i∗δ([α]) = i∗[γ] = [∂β] = 0. This shows

im δ ⊂ ker i∗.

Assume [γ] ∈ Hn−1(C′•) such that i∗[γ] = 0. Then i(γ) = ∂β for some β. Let α = p(β). Then

∂(α) = ∂p(β) = p(∂β) = pi(γ) = 0.

So [α] defines a homology class and δ[α] = [γ] by construction. This shows

ker i∗ ⊂ im δ.

The naturality is straight-forward to verify. �
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Relative homology

Definition 16.3. Let A ⊂ X be a subspace. It indues a natural injective chain map S•(A) ↪→ S•(X). We
define the singular chain complex of X relative to A to be

Sn(X, A) := Sn(X)/Sn(A)

with the induced differential. Its homology Hn(X, A) := Hn(S•(X, A)) is called the n-th relative homology.

Theorem 16.4. For A ⊂ X, there is a long exact sequence of abelian groups

· · · → Hn(A)→ Hn(X)→ Hn(X, A)
δ→ Hn−1(A)→ · · ·

Proof. This follows from the short exact sequence of complexes

0→ S•(A)→ S•(X)→ S•(X, A)→ 0.

�

Let us define relative n-cycles Zn(X, A) and relative n-boundaries Bn(X, A) to be

Zn(X, A) = {γ ∈ Sn(X) : ∂γ ∈ Sn−1(A)}

Bn(X, A) = Bn(X) + Sn(A) ⊂ Sn(X).

A

• •

•

•

• •

•

•

X

γ

FIGURE 26. A chain γ in Zn(X, A) with two simplexes. The green face lies outside A but
cancelled out from the two simplexes. So ∂γ ⊂ A holds.

Then it is easy to check that Sn(A) ⊂ Bn(X, A) ⊂ Zn(X, A) ⊂ Sn(X) and

Hn(X, A) = Zn(X, A)/Bn(X, A).

Two relative n-cycles γ1, γ2 defines the same class [γ1] = [γ2] in Hn(X, A) if and only if γ1 − γ2 is homolo-
gous to a chain in A.

The connecting map

δ : Hn(X, A)→ Hn−1(A)

can be understood as follows: a n-cycle in Hn(X, A) is represented by an n-chain γ ∈ Sn(X) such that its
boundary ∂(γ) lies in A. Viewing ∂(γ) as an (n− 1)-cycle in A, then

δ[γ] = [∂(γ)].
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A

β

β

γ1 γ2

• •

• •

X
α

∂α = β + γ1 − γ2, β ∈ S•(A)

=⇒ [γ1] = [γ2] ∈ Hn(X, A)

FIGURE 27. Relative n-cycles

Let f : (X, A)→ (Y, B) be a map of pairs. It naturally induces a commutative diagram

0 // S•(A) //

��

S•(X) //

��

S•(X, A) //

��

0

0 // S•(B) // S•(Y) // S•(Y, B) // 0

which further induces compatible maps on various homology groups

· · · // Hn(A) //

��

Hn(X) //

��

Hn(X, A)

��

δ // Hn−1(A) //

��

· · ·

· · · // Hn(B) // Hn(Y) // Hn(Y, B) δ // Hn−1(B) // · · ·

This construction can be generalized to the triple B ⊂ A ⊂ X.

Theorem 16.5. If B ⊂ A ⊂ X are subspaces, then there is a long exact sequence

· · · → Hn(A, B)→ Hn(X, B)→ Hn(X, A)
δ→ Hn−1(A, B)→ · · · .

Proof. This follows from the long exact sequence associated to the exact sequence

0→ S•(A)

S•(B)
→ S•(X)

S•(B)
→ S•(X)

S•(A)
→ 0.

�

Theorem 16.6 (Homotopy Axiom for Pairs). If f , g : (X, A)→ (Y, B) and f is homotopic to g rel A. Then

Hn( f ) = Hn(g) : Hn(X, A)→ Hn(Y, B).

Reduced homology

Proposition 16.7. Let {Xα} be path connected components of X, then

Hn(X) =
⊕

α

Hn(Xα).
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Proof. This is because
S•(X) =

⊕
α

S•(Xα).

�

Proposition 16.8. Let X be path connected. Then H0(X) ∼= Z.

Proof. H0(X) = S0(X)/∂S1(X). Let us define the map

ε : S0(X)→ Z, ∑
p∈X

mp p→∑
p

mp.

The map ε is zero on ∂S1(X). On the other hand, assume ε(∑p∈X mp p) = 0, then we can write

∑
p∈X

mp p = ∑
i
(pi − qi)

into pairs. Since X is path connected, we can find a path γi : I → X such that ∂γ = pi − qi. Therefore
∑p∈X mp p = ∑i ∂γi ∈ ∂S1(X). It follows that ε induces an isomorphism

ε : H0(X) ∼= Z

�

In general, we have a surjective map

ε : H0(X)→ Z, ∑
p∈X

mp p→∑
p

mp.

Definition 16.9. We define the reduced homology group of X by

H̃n(X) =

Hn(X) n > 0

ker(H0(X)→ Z) n = 0

We can think about the reduced homology group as the homology group of the chain complex

· · · → S2(X)→ S1(X)→ S0(X)→ Z.

The long exact sequence still holds for the reduced case

· · · → H̃n(A)→ H̃n(X)→ Hn(X, A)
δ→ H̃n−1(A)→ · · ·

Example 16.10. If X is contractible, then H̃n(X) = 0 for all n.

Example 16.11. Let x0 ∈ X be a point. Using the long exact sequence for A = {x0} ⊂ X, we find

Hn(X, x0) = H̃n(X).
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17 BARYCENTRIC SUBDIVISION AND EXCISION

The fundamental property of homology which makes it computable is excision.

Barycentric Subdivision

Definition 17.1. Let ∆n be the standard n-simplex with vertices v0, · · · , vn. We define its barycenter to be

c(∆n) =
1

n + 1

n

∑
i=0

vi ∈ ∆n.

Definition 17.2. We define the barycentric subdivision B∆n of a n-simplex ∆n as follows:

1◦. B∆0 = ∆0.
2◦. Let F0, · · · , Fn be the n-simplexes of faces of ∆n+1, c be the barycenter of ∆n+1. Then B∆n+1 consists

of (n + 1)-simplexes with ordered vertices [c, w0, · · · , wn] where [w0, · · · , wn] is a n-simplexes in
BF0, · · · , BFn.

Equivalently, a simplex in B∆n is indexed by a sequence {S0 ⊂ S1 · · · ⊂ Sn = ∆n} where Si is a face of
Si+1. Then its vertices are [c(Sn), c(Sn−1), · · · , c(S0)]. It is seen that ∆n is the union of simplexes in B∆n.

v0

v1 v2

c

w0

w1w2

•

• ••

••
•

FIGURE 28. B∆2 = [c, w0, v2]− [c, w1, v2] + [c, w1, v0]− [c, w2, v0] + [c, w2, v1]− [c, w0, v1]
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FIGURE 29. Barycentric Subdivision B∆2, two times B2∆2, and three times B3∆2
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FIGURE 30. Barycentric Subdivision B∆3
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Definition 17.3. We define the n-chain of barycentric subdivision Bn by

Bn = ∑
α

±σα ∈ Sn(∆n)

where the summation is over all sequence α = {S0 ⊂ S1 · · · ⊂ Sn = ∆n}. σα is the simplex with ordered
vertices [c(Sn), c(Sn−1), · · · , c(S0)], viewed as a singular n-chain in ∆n. The sign ± is about orientation: if
the orientation of [c(Sn), c(Sn−1), · · · , c(S0)] coincides with that of ∆n, we take +; otherwise we take −.

Definition 17.4. We define the following composition map

Sk(∆
m)× Sn(∆k)→ Sn(∆m), σ× η → σ ◦ η.

This is defined on generators via the composition ∆n → ∆k → ∆m and extended linearly to singular chains.

Similarly, there is a natural map denoted by

Sn(∆m) : Sm(X)→ Sn(X), η : σ→ η∗(σ) := σ ◦ η

where η∗(σ) = σ ◦ η is the composition of σ with η. It is easy to see that

(η1 ◦ η2)
∗ = η∗2 ◦ η∗1 , ∀η1 ∈ Sk(∆

m), η2 ∈ Sn(∆k).

Example 17.5. Let

∂∆n =
n

∑
i=0

(−1)i∂(i)∆n ∈ Sn−1(∆n)

be the boundary faces. Then (∂∆n) ◦ (∂∆n−1) = 0. The operator

∂n = (∂∆n)∗ : Sn(X)→ Sn−1(x)

defines the boundary map in singular chains.

Lemma 17.6. The barycentric subdivision is compatible with the boundary map

∂Bn = B(∂∆n)

where B(∂∆n) is the barycentric subdivision of faces ∂∆n of ∆n, viewed as an (n− 1)-chain in ∆n. Equivalently, we
have the following composition relation

Bn ◦ (∂∆n) = (∂∆n) ◦Bn−1.

Proof. The choice of ordering and orientation implies ∂Bn = B(∂∆n). Here is an illustration for n = 2.

v0

v1 v2

c

w0

w1w2

•

• ••

••
•

B∆2 = [c, w0, v2]− [c, w1, v2] + [c, w1, v0]− [c, w2, v0] + [c, w2, v1]− [c, w0, v1]. So

∂B∆2 =([c, w0]− [c, v2] + [w0, v2])− ([c, w1]− [c, v2] + [w1, v2]) + ([c, w1]− [c, v0] + [w1, v0])

− ([c, w2]− [c, v0] + [w2, v0]) + ([c, w2]− [c, v1] + [w2, v1])− ([c, w0]− [c, v1] + [w0, v1])

=([w0, v2]− [w0, v1])− ([w1, v2]− [w1, v0]) + ([w2, v1]− [w2, v0]) = B(∂∆2).

�
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Lemma 17.7. There exists Tn+1 ∈ Sn+1(∆n) for all n ≥ 0 such that

Bn − 1∆n = Tn+1 ◦ ∂∆n+1 + ∂∆n ◦ Tn.

Here 1∆n : ∆n → ∆n is the identity map, viewed as a n-chain in Sn(∆n).

Proof. We construct Tn inductively. T1 = 0. Suppose we have found Tn. We need to find Tn+1 such that

∂(Tn+1) = Bn − 1∆n − ∂∆n ◦ Tn.

Using Lemma 17.6, we have

∂ (Bn − 1∆n − ∂∆n ◦ Tn) = (Bn − 1∆n − ∂∆n ◦ Tn) ◦ ∂∆n

=∂∆n ◦ (Bn−1 − 1∆n−1 − Tn ◦ ∂∆n)

=∂∆n ◦ ∂∆n−1 ◦ Tn−1 = 0.

Therefore Bn − 1∆n − ∂∆n ◦ Tn is a n-cycle in Sn(∆n). However

Hn(∆n) = 0, ∀n ≥ 1

since ∆n is contractible. So Bn − 1∆n − ∂∆n ◦ Tn is a n-boundary and Tn+1 can be constructed.

�

Definition 17.8. We define the barycentric subdivision on singular chain complex by

B∗ : S•(X)→ S•(X)

where B∗ = B∗n on Sn(X).

Theorem 17.9. The barycentric subdivision map B∗ : S•(X) → S•(X) is a chain map. Moreover, it is chain
homotopic to the identity map, hence a quasi-isomorphism.

Proof. Lemma 17.6 implies B∗ is a chain map. It is chain homotopic to the identity map by Lemma 17.7. �

Excision

Theorem 17.10 (Excision). Let U ⊂ A ⊂ X be subspaces such that Ū ⊂ A◦ (the interior of A). Then the inclusion
i : (X−U, A−U) ↪→ (X, A) induces isomorphisms

i∗ : Hn(X−U, A−U) ∼= Hn(X, A), ∀n.

Proof. Let us call σ : ∆n → X small if

σ(∆n) ⊂ A or σ(∆n) ⊂ X−U.

Let S′•(X) ⊂ S•(X) denote the subcomplex generated by small simplexes. The condition Ū ⊂ A◦ implies
that for any simplex σ : ∆n → X, there exists a big enough k such that

(B∗)k(σ) ∈ S′(X).

Let S′•(X, A) be defined by the exact sequence

0→ S•(A)→ S′(X)→ S′(X, A)→ 0.

It is easy to see that

S′•(X, A) ∼= S•(X−U, A−U).
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There is a natural commutative diagram of chain maps

0 // S•(A) //

��

S′•(X) //

��

S′•(X, A) //

��

0

0 // S•(A) // S•(X) // S•(X, A) // 0

By the Five Lemma, it is enough to show

S′•(X)→ S•(X)

is a quasi-isomorphism.

• injectivity of H(S′•(X))→ H(S•(X)).

Let α be a cycle in S′•(X) and α = ∂β for β ∈ S•(X). Take k big enough that (B∗)k(β) ∈ S′(X). Then

(B∗)k(α) = ∂(B∗)k(β).

Hence the class of (B∗)k(α) in H(S′•(X)) is zero, so is α which is homologous to (B∗)k(α).

• surjectivity of H(S′•(X))→ H(S•(X)).

Let α be a cycle in S•(X). Take k big enough that (B∗)k(α) ∈ S′•(X). Then (B∗)k(α) is a small cycle
which is homologous to α. �

Theorem 17.11. Let X1, X2 be subspaces of X and X = X◦1 ∪ X◦2 . Then

H•(X1, X1 ∩ X2)→ H•(X, X2)

is an isomorphism for all n.

Proof. Apply Excision to U = X− X1, A = X2.

�

Theorem 17.12 (Mayer-Vietoris). Let X1, X2 be subspaces of X and X = X◦1 ∪X◦2 . Then there is an exact sequence

· · · → Hn(X1 ∩ X2)
(i1∗ ,i2∗)→ Hn(X1)⊕Hn(X2)

j1∗−j2∗→ Hn(X)
δ→ Hn−1(X1 ∩ X2)→ · · ·

It is also true for the reduced homology.

Proof. Let S•(X1) + S•(X2) ⊂ S•(X) be the subspace spanned by S•(X1) and S•(X2).

We have a short exact sequence

0→ S•(X1 ∩ X2)
(i1,i2)→ S•(X1)⊕ S•(X2)

j1−j2→ S•(X1) + S•(X2)→ 0.

Similar to the proof of Excision via barycentric subdivision, the embedding S•(X1) + S•(X2) ⊂ S•(X) is a
quasi-isomorphism. Mayer-Vietoris sequence follows. �

Theorem 17.13. Let A ⊂ X be a closed subspace. Assume A is a strong deformation retract of a neighborhood in X.
Then the map (X, A)→ (X/A, A/A) induces an isomorphism

H•(X, A) = H̃•(X/A).

Proof. Let U be an open neighborhood of A that deformation retracts to A. Then H•(A) ∼= H•(U), hence

H•(X, A) ∼= H•(X, U)
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by Five Lemma. Since A is closed and U is open, we can apply Excision to find

H•(X, A) ∼= H•(X, U) ∼= H•(X− A, U − A).

The same consideration applied to (X/A, A/A) and U/A gives

H•(X/A, A/A) ∼= H•(X/A− A/A, U/A− A/A) = H•(X− A, U − A).

�

This Theorem in particular applies to cofibrations.

Corollary 17.14. Let A ⊂ X be a closed cofibration. Then H•(X, A) = H̃•(X/A).

Suspension

Let (X, x0) be a well-pointed space. Recall that its reduced cone C?X and reduced suspension ΣX are

C?X = X ∧ I =
X× I

(X× {0} ∪ x0 × I)
, ΣX = X ∧ S1 =

X× I
(X× {0} ∪ X× {1} ∪ x0 × I)

.

Since (X, x0) is a well-pointed, we have homotopy equivalences

C?X ' X× I
X× {0} , ΣX ' X× I

(X× {0} ∪ X× {1}) .

Theorem 17.15. Let (X, x0) be a well-pointed space. Then H̃n(ΣX) = H̃n−1(X).

Proof. Let

Z =
X× I

X× {0} , Y =
X× I

(X× {0} ∪ X× {1}) = Z/X.

Since Z is contractible, the homology exact sequence associated to the pair X ⊂ Z implies

H̃n(Z, X) = H̃n−1(X).

It follows that

H̃n(ΣX) = H̃n(Y) = H̃n(Z/X) = H̃n(Z, X) = H̃n−1(X).

�

Proposition 17.16. The reduced homology of the sphere Sn is given by

H̃k(Sn) =

Z k = n

0 k 6= n

In particular, spheres of different dimensions are not homotopy equivalent.

Proof. This follows from the previous theorem and Sn = ΣnS0 where S0 = {±1} consists of two points.

�
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Applications of Homology of spheres

Proposition 17.17. If m 6= n, then Rm and Rn are not homeomorphic.

Proof. Assume f : Rm → Rn is a homeomorphism. Then f induces a homeomorphism

Rm − {p} → Rn − { f (p)}

hence a homotopy equivalence between Sm−1 and Sn−1. Contradiction. �

Definition 17.18. A continous map f : Sn → Sn (n ≥ 0) has degree d, denoted by deg( f ) = d, if

f∗ : H̃n(Sn) = Z→ H̃n(Sn) = Z

is multiplication by d.

We give a geometric interpretation of the degree of f : Sn → Sn. Let V ⊂ Sn be a small open ball such
that f−1(V)→ V is a disjoint union of open balls

f−1(V) = U1 ∪ · · · ∪Ud.

Let fi : Ūi/∂Ūi
∼= Sn → V̄/∂V̄ ∼= Sn. We have the commutative diagram

Hn(Sn) //

f∗
��

Hn(Sn/(Sn −∪iUi)) ∼= ⊕i Hn(Sn)

⊕i( fi)∗
��

Hn(Sn) // Hn(Sn/(Sn −V)) ∼= Hn(Sn)

It is easy to see that first row is k→ (k, k, · · · , k) and the second row is k→ k. It follows that

deg( f ) =
d

∑
i=1

deg( fi).

Note that when f−1(V) → V is a covering map, then f : Ui → V is a homeomorphism. We have
deg( fi) = ±1 and deg( f ) is given by a counting with signs.

Example 17.19. Identify S2 = C∪ {∞}. Consider the map f : S2 → S2, z→ zk. Then deg( f ) = k.

Lemma 17.20. Let f , g : Sn → Sn be continuous maps.

1◦. deg( f ◦ g) = deg( f )deg(g).
2◦. If f ' g are homotopic, then deg( f ) = deg(g)
3◦. If f is a homotopy equivalence, then deg( f ) = ±1.

Proof. All the statements follow from the fact that Hn defines a functor Hn : hTop→ Group .

�

Proposition 17.21. Let r : Sn → Sn, (x0, · · · , xn)→ (−x0, x1, · · · , xn) be the reflection. Then

deg(r) = −1.

Proof. We prove by induction on n. This is true for n = 0. Assume the case for n− 1.

Consider the pair (Dn, Sn−1). We find an isomorphism H̃n(Sn)→ H̃n−1(Sn−1) by

H̃n(Sn) = H̃n(Dn/Sn−1) = H̃n(Dn, Sn−1)
δ→ H̃n−1(Sn−1).

This isomorphism is compatible with the reflection and leads to the commutative diagram
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H̃n(Sn)

r∗
��

δ // H̃n−1(Sn−1)

r∗
��

H̃n(Sn)
δ // H̃n−1(Sn−1)

This proves the case for n.

�

Corollary 17.22. Let σ : Sn → Sn, (x0, · · · , xn)→ (−x0, · · · ,−xn) be the antipodal map. Then

deg(σ) = (−1)n+1.

Proof. σ is a composition of n + 1 reflections. �

Proposition 17.23. If f : Sn → Sn has no fixed points. Then f is homotopic to the antipodal map.

Proof. Let σ be the antipodal map. Then the map

F : Sn × I → Sn, F(x, t) =
(1− t)σ(x) + t f (x)
‖(1− t)σ(x) + t f (x)‖

gives the required homotopy. �

Theorem 17.24 (Hairy Ball Theorem). Sn has a nowhere vanishing tangent vector field if and only if n is odd.

Proof. If n is odd, we construct

v(x0, · · · , xn) = (−x1, x0,−x3, x2, · · · ).

Conversely, assume v is no-where vanishing vector field. Let

f : Sn → Sn, x → v(x)
|v(x)| .

The map
F : Sn × I → Sn, F(x, t) = cos(πt)x + sin(πt) f (x)

defines a homotopy between the identity map 1 and the antipodal map σ. It follows that

deg(σ) = 1 =⇒ n = odd.

�

Theorem 17.25 (Brower’s Fixed Point Theorem). Any continuous map f : Dn → Dn has a fixed point.

Proof. Assume f has no fixed point. Define

r : Dn → Sn−1

where r(p) is the intersection of ∂Dn with the ray starting from f (p) pointing toward p. Then r defines a
retract of Sn−1 ↪→ Dn. This implies H•(Dn) = H•(Sn−1)⊕H•(Dn, Sn−1). Contradiction.

�
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Cellular homology

Lemma 18.1. Let {(Xi, xi)}i∈I be well-pointed spaces. Then

H̃n(
∨
i∈I

Xi) =
⊕
i∈I

H̃n(Xi).

Proof. Let
Y = ä

i∈I
Xi, A = ä

i∈I
{xi}

A ⊂ Y is a cofibration, therefore

H̃n(
∨
i∈I

Xi) = H̃n(Y/A) = Hn(Y, A) =
⊕
i∈I

Hn(Xi, xi) =
⊕
i∈I

H̃n(Xi).

�

Definition 18.2. Let (X, A) be a relative CW complex with skeletons: A = X−1 ⊂ X0 ⊂ · · · ⊂ Xn ⊂ · · · .
We define the relative cellular chain complex (Ccell

• (X, A), ∂)

· · · → Ccell
n (X, A)

∂→ Ccell
n−1(X, A)

∂→ · · · → Ccell
0 (X, A)→ 0

where
Ccell

n (X, A) := Hn(Xn, Xn−1)

and the boundary map ∂ is defined by the commutative diagram

Hn(Xn, Xn−1)
∂ //

δ

((

Hn−1(Xn−1, Xn−2)

Hn−1(Xn−1, A)

j
55

Here δ is the connecting map of relative homology for A ⊂ Xn−1 ⊂ Xn and j is the natural map.

Assume Xn is obtained from Xn−1 by attaching n-cells indexed by Jn

ä
α∈Jn

Sn−1 f
//

� _

��

Xn−1
� _

��
ä

α∈Jn

Dn
Φ f // Xn

Since Xn−1 ↪→ Xn is a cofibration, Lemma 18.1 implies that

Ccell
n (X, A) ∼= H̃n(Xn/Xn−1) ∼=

⊕
Jn

H̃n(Sn) ∼=
⊕

Jn

Z

is the free abelian group generated by each attached Hn(Dn, Sn−1) = H̃n(Sn). Using the diagram

Hn(Xn, Xn−1)
∂n //

δn

((

Hn−1(Xn−1, Xn−2)
∂n−1 //

δn−1

))

Hn−2(Xn−2, Xn−3)

Hn−1(Xn−1, A)

jn
55

Hn−1(Xn−2, A)

jn−1
55
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and δn−1 ◦ jn = 0, we see that
∂n−1 ◦ ∂n = jn−1 ◦ δn−1 ◦ jn ◦ δn = 0.

Therefore (Ccell
• (X, A), ∂) indeed defines a chain complex.

Definition 18.3. Let (X, A) be a relative CW complex. We define its n-th relative cellular homology by

Hcell
n (X, A) := Hn(Ccell

• (X, A), ∂) .

When A = ∅, we simply denote it by Hcell
n (X) called the n-th cellular homology.

Lemma 18.4. Let (X, A) be a relative CW complex. Let 0 ≤ q < p ≤ ∞. Then

Hn(Xp, Xq) = 0, if n ≤ q or n > p.

Proof. Consider the cofibrations

Xq ↪→ Xq+1 ↪→ · · · ↪→ Xp−1 ↪→ Xp

where each quotient is a wedge of spheres

Xq+1/Xq =
∨

Sq+1, Xq+2/Xq+1 =
∨

Sq+2, · · · , Xp/Xp−1 =
∨

Sp.

Assume n ≤ q or n > p. Then

Hn(Xq+1, Xq) = Hn(Xq+2, Xq+1) = · · · = Hn(Xp, Xp−1) = 0.

Consider the triple Xq ↪→ Xq+1 ↪→ Xq+2. The exact sequence

Hn(Xq+1, Xq)→ Hn(Xq+2, Xq)→ Hn(Xq+2, Xq+1)

implies Hn(Xq+2, Xq) = 0. The same argument applying to the triple Xq ↪→ Xq+2 ↪→ Xq+3 implies
Hn(Xq+3, Xq) = 0. Repeating this process until arriving at Xq ↪→ Xp−1 ↪→ Xp, we find Hn(Xp, Xq) = 0. �

Theorem 18.5. Let (X, A) be a relative CW complex. Then the cellular homology coincides with the singular homol-
ogy

Hcell
n (X, A) ∼= Hn(X, A).

Proof. Consider the following commutative diagram

Hn+1(Xn+1, Xn)

��

∂n+1

))

Hn(Xn−2, A)(= 0)

��
Hn(Xn−1, A)(= 0) // Hn(Xn, A) //

��

Hn(Xn, Xn−1) //

∂n

))

Hn−1(Xn−1, A)

��
Hn(Xn+1, A)

��

Hn−1(Xn−1, Xn−2)

��
Hn(Xn+1, Xn)(= 0) Hn−1(Xn−2, A)(= 0)

Diagram chasing implies
Hn(Xn+1, A) ∼= Hcell

n (X, A).

Theorem follows from the exact sequence

Hn+1(X, Xn+1)(= 0)→ Hn(Xn+1, A)→ Hn(X, A)→ Hn(X, Xn+1)(= 0)
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�

Let f : (X, A)→ (Y, B) be a cellular map. It induces a map on cellular homology

f∗ : Hcell
• (X, A)→ Hcell

• (Y, B).

Therefore in the category of CW complexes, we can work entirely with cellular homology which is combi-
natorially easier to compute as we discuss next.

Cellular Boundary Formula

Let us now analyze cellular differential

∂n : Hn(Xn, Xn−1)→ Hn−1(Xn−1, Xn−2).

For each n-cell en
α , we have the gluing map

fen
α

: Sn−1 → Xn−1.

This defines a map

f̄en
α

: Sn−1 → Xn−1/Xn−2 =
∨

Jn−1

Sn−1

which induces a degree map

( f̄en
α
)∗ : H̃n−1(Sn−1) ∼= Z→

⊕
Jn−1

H̃n−1(Sn−1) ∼=
⊕
Jn−1

Z.

Collecting all n-cells, this generates the degree map

dn :
⊕

Jn

Z→
⊕
Jn−1

Z.

Theorem 18.6. Under the identification Ccell
n (Xn, Xn−1) ∼=

⊕
Jn

Z, cellular differential coincides with the degree map

∂n ∼= dn.

Proof. This follows from chasing the definition of the connecting map ∂n : Hn(Xn, Xn−1)→ Hn−1(Xn−1, Xn−2).

�

Example 18.7. CPn has a CW structure with a single 2m-cell for each m ≤ n. Since there is no odd dim
cells, the degree map d = 0. We find

Hk(CPn) =

Z k = 0, 2, · · · , 2n

0 otherwise

Example 18.8. A closed oriented surface Σg of genus g has a CW structure with a 0-cell e0, 2g 1-cells
{a1, b1, · · · , ag, bg}, and a 2-cell e2.

In the cell complex

Ze2
d2→
⊕

i
Zai ⊕

⊕
i

Zbi
d1→ Ze0.

the degree map d2 sends

e2 →∑
i
(ai + bi − ai − bi) = 0
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••

•

•

• •

•

•

FIGURE 31. The CW structure of a closed oriented surface Σg of genus g = 2

so d2 = 0. Similarly, d1 is also 0. We find

Hk(Σg) =


Z k = 0

Z2g k = 1

Z k = 2

0 k > 2.

Example 18.9. RPn = Sn/Z2 has a CW structure with a k-cell for each 0 ≤ k ≤ n.

RP0 ↪→ RP1 ↪→ · · · ↪→ RPn−1 ↪→ RPn.

RPn−1

RPn

en
+

en
−

en
+ and en

− are identified under Z2

We have the cell oomplex

Z
dn→ Z

dn−1→ Z→ · · · d1→ Z

The degree map dk : H̃k−1(Sk−1)→ Hk−1(Sk−1) is

dk = 1 + deg(antipodal map) = 1 + (−1)k.

So the cell complex becomes

· · · 2→ Z
0→ Z

2→ Z
0→ Z.

It follows that

Hk(RPn) =



Z k = 0

Z/2Z 0 < k < n, k odd

Z k = n = odd

0 k = n = even

0 k > n
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Euler characteristic

Definition 18.10. Let X be a finite CW complex of dimension n and denote by ci the number of i-cells of X.
The Euler characteristic of X is defined as:

χ(X) := ∑
i
(−1)ici.

Recall that any finitely generaed abelian group G is decomposed into a free part and a torsion part

G ∼= Zr ⊕Z/m1Z⊕ · · · ⊕Z/mkZ.

The integer r := rk(G) is called the rank of G.

Lemma 18.11. Let (G•, ∂) be a chain complex of finitely generaed abelian groups such that Gn = 0 if |n| >> 0.
Then

∑
i
(−1)i rk(Gi) = ∑

i
(−1)i rk(Hi(G•)).

Proof. We consider the chain complex (GQ
• , ∂) where

GQ
k = Gk ⊗Z Q = Qrk(Gk).

Each GQ
k is now a vector space over the field Q, and ∂ is a linear map. Moreover

Hi(GQ
• ) = Qrk(Hi(G•)).

The lemma follows from the corresponding statement for linear maps on vector spaces. �

Theorem 18.12. Let X be a finite CW complex. Then

χ(X) = ∑
i
(−1)ibi(X)

where bi(X) := rk(Hi(X)) is called the i-th Betti number of X In particular, χ(X) is independent of the chosen CW
structure on X and only depend on the cellular homotopy class of X.

Proof. This follows from Lemma 18.11 and the fact that the homologies of celluar complex compute the
singular homologies. χ(X) does not dependent of the chosen CW structure on X since Hi(X)’s do not. �

Example 18.13. χ(Sn) = 1 + (−1)n.

Example 18.14. Let X be the tetrahedron and Y be the cube. They give two different CW structures on S2,
hence two different counts of the Euler characteristic.

•

•

•

•
∼=

X

•

∼=

•

••
••

• •
•

•
•

•••

Y

FIGURE 32. The CW structures of sphere S2

χ(X) = 4− 6 + 4 = 2, χ(Y) = 8− 12 + 6 = 2.
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R refers to a commutative ring in this section.

Cohomology

Definition 19.1. A cochain complex over R is a sequence of R-module maps

· · · → Cn−1 dn−1→ Cn dn→ Cn−1 → · · ·

such that dn ◦ dn−1 = 0. When R is not specified, we mean cochain complex of abelian groups (i.e. R = Z).

Sometimes we just write the map by d and the cochain complex by (C•, d). Then

dn = d|Cn and d2 = 0.

Definition 19.2. Given a cochain complex (C•, d), its n-cocycles Zn and n-coboundaries Bn are

Zn = Ker(d : Cn → Cn+1), Bn = Im(d : Cn−1 → Cn).

d2 = 0 implies Bn ⊂ Zn. We define the n-th cohomology group by

Hn(C•, d) :=
Zn

Bn =
ker(dn)

im(dn−1)
.

A cochain complex C• is called acyclic or exact if Hn(C•) = 0 for all n.

We are interested in the following relation between cochain and chain complex.

Definition 19.3. Let (C•, ∂) be a chain complex over R, and G be a R-module. We define its dual cochain
complex (C•, d) = HomR(C•, G) by

· · ·HomR(Cn−1, G)→ HomR(Cn, G)→ HomR(Cn+1, G)→ · · ·

Here given f ∈ HomR(Cn, G), we define dn f ∈ HomR(Cn+1, G) by

dn f (c) := f (∂n+1(c)), ∀c ∈ Cn+1.

Definition 19.4. Let G be an abelian group and X be a topological space. For n ≥ 0, we define the group of
singular n-cochains in X with coefficient in G to be

Sn(X; G) := Hom(Sn(X), G).

The dual cochain complex S•(X; G) = Hom(S•(X), G) is called the singular cochain complex with coeffi-
cient in G. Its cohomology is called the singular cohomology and denoted by

Hn(X; G) := Hn(S•(X; G)).

When G = Z, we simply write it as Hn(X).

We have the analogue of chain homotopy between cochain complexes. We leave the details to the read-
ers. Proposition 15.16 holds for singular cochains as well.

Theorem 19.5. Hn(−; G) defines a contra-variant functor

Hn(−; G) : hTop→ Ab .

Theorem 19.6 (Dimension Axiom). If X is contractible, then

Hn(X; G) =

G n = 0

0 n > 0
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The proof is similar to Theorem 15.18.

Lemma 19.7. Let G be a R-module and 0 → A1 → A2 → A3 → 0 be an exact sequence of R-modules. Then the
following sequence is exact

0→ HomR(A3, G)→ HomR(A2, G)→ HomR(A1, G).

If A3 is a free R-module (or more generally projective R-module), then the last morphism is also surjective.

Definition 19.8. Let G be an abelian group. Let A ⊂ X be a subspace. We define the relative singular
cochain complex with coefficient in G by

S•(X, A; G) := Hom(S•(X)/S•(A), G).

Its cohomology is called the relative singular cohomology, denoted by H•(X, A; G).

Since S•(X)/S•(A) is a free abelian group, we have a short exact sequence of cochain complex

0→ S•(X, A; G)→ S•(X; G)→ S•(A; G)→ 0

which induces a long exact sequence of cohomology groups

0→ H0(X, A; G)→ H0(X; G)→ H0(A; G)→ H1(X, A; G)→ · · · .

Moreover, the connecting maps
δ : Hn(A, G)→ Hn+1(X, A; G)

is natural in the same sense as that for homology.

Excision and Mayer-Vietoris sequence for cohomology are proved similarly as homology.

Theorem 19.9 (Excision). Let U ⊂ A ⊂ X be subspaces such that Ū ⊂ A◦ (the interior of A). Then the inclusion
i : (X−U, A−U) ↪→ (X, A) induces isomorphisms

i∗ : Hn(X, A; G) ∼= Hn(X−U, A−U; G), ∀n.

Theorem 19.10 (Mayer-Vietoris). Let X1, X2 be subspaces of X and X = X◦1 ∪X◦2 . Then there is an exact sequence

· · · → Hn(X; G)→Hn(X1; G)⊕Hn(X2; G)→Hn(X1 ∩ X2; G)→Hn+1(X; G)→ · · ·

Universal Coefficient Theorem for Cohomology

Definition 19.11. Let M, N be two R-modules. Let P• → M be a free R-module resolution of M:

· · · Pn → Pn−1 → · · · P1 → P0 → M→ 0

is an exact sequence of R-modules and Pi’s are free. We define the Ext group

Extk
R(M, N) = Hk(Hom(P•, N))

and the Tor group
TorR

k (M, N) = Hk(P• ⊗R N).

Note that
Ext0

R(M, N) = HomR(M, N), TorR
0 (M, N) = M⊗R N.

Ext and Tor are called the derived functors of Hom and ⊗. It is a classical result in homological algebra
that Extk

R(M, N) and TorR
k (M, N) don’t depend on the choice of resolutions of M. They are functorial with

respect to both variables and TorR
k is symmetric in two variables

TorR
k (M, N) = TorR

k (N, M).
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Moreover, for any short exact sequence of R-modules

0→ M1 → M2 → M3 → 0,

there are associated long exact sequences

0→ HomR(M3, N)→ HomR(M2, N)→ HomR(M1, N)

→ Ext1
R(M3, N)→ Ext1

R(M2, N)→ Ext1
R(M1, N)

→ Ext2
R(M3, N))→ Ext2

R(M2, N)→ Ext2
R(M1, N)→ · · ·

and

0→ HomR(N, M1)→ HomR(N, M2)→ HomR(N, M3)

→ Ext1
R(N, M1)→ Ext1

R(N, M2)→ Ext1
R(N, M3)

→ Ext2
R(N, M1))→ Ext2

R(N, M2)→ Ext2
R(N, M3)→ · · ·

and

· · · → TorR
2 (M1, N)→ TorR

2 (M2, N)→ TorR
3 (M3, N)

→ TorR
1 (M1, N)→ TorR

1 (M2, N)→ TorR
1 (M3, N)

→ M1 ⊗R N → M2 ⊗R N → M3 ⊗R N → 0

Now we focus on the case of abelian groups R = Z. For any abelian group M, let P0 be a free abelian
group such that P0 → M is surjective. Let P1 be its kernel. Then P1 is also free and

0→ P1 → P0 → M→ 0

defines a free resolution of abelian groups. This implies that

Extk(M, N) = 0, Tork(M, N) = 0 for k ≥ 2.

For abelian groups we will simply write

Ext(M, N) := Ext1
Z(M.N), Tor(M, N) := TorZ

1 (M, N) .

Lemma 19.12. If either M is free or N is divisible, then Ext(M, N) = 0.

Proposition 19.13. Let (C•, ∂) be a chain complex of free abelian groups, then there exists a split exact sequence

0→ Ext(Hn−1, G)→ Hn(Hom(C•, G))→ Hom(Hn, G)→ 0

which induces isomorphisms

Hn(Hom(C•, G)) ∼= Hom(Hn(C•), G)⊕ Ext(Hn−1(C•), G)

Proof. Let Bn be n-boundaries and Zn be n-cycles, which are both free. We have exact sequences

0→ Bn → Zn → Hn → 0, 0→ Zn → Cn → Bn−1 → 0.

This implies exact sequences

0→ Hom(Hn, G)→ Hom(Zn, G)→ Hom(Bn, G)→ Ext(Hn, G)→ 0

and the split exact sequence

0→ Hom(Bn−1, G)→ Hom(Cn, G)→ Hom(Zn, G)→ 0.
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Consider the commutative diagram with exact columns

0 0

��
Hom(Zn−1, G) //

OO

Hom(Bn−1, G)

��

// Ext(Hn−1, G)

Hom(Cn−1, G) //

OO

Hom(Cn, G) //

��

Hom(Cn+1, G)

Hom(Hn, G) // Hom(Zn, G) //

��

Hom(Bn, G)

OO

0 0

OO

Diagram chasing shows this implies a short exact sequence

0→ Ext(Hn−1, G)→ Hn(Hom(C•, G))→ Hom(Hn, G)→ 0

which is also split due to the split of the middle column in the above diagram. �

Theorem 19.14 (Universal Coefficient Theorem for Cohomology). Let G be an abelian group and X be a topo-
logical space. Then for any n ≥ 0, there exists a split exact sequence

0→ Ext(Hn−1(X), G)→ Hn(X; G)→ Hom(Hn(X), G)→ 0

which induces isomorphisms

Hn(X; G) ∼= Hom(Hn(X), G)⊕ Ext(Hn−1(X), G).

Proof. Apply the previous Lemma to C• = S•(X). �

Universal Coefficient Theorem for Homology

Definition 19.15. Let G be an abelian group. Let A ⊂ X be a subspace. We define the relative singular
chain complex with coefficient in G by

S•(X, A; G) := S•(X, A)⊗Z G.

Its homology is called the relative singular homology with coefficient in G, denoted by H•(X, A; G). When
A = ∅, we simply get the singular homology H•(X; G).

Similar long exact sequence for relative singular homologies follows from the short exact sequence

0→ S•(A; G)→ S•(X; G)→ S•(X, A; G)→ 0.

Theorem 19.16 (Universal Coefficient Theorem for homology). Let G be an abelian group and X be a topological
space. Then for any n ≥ 0, there exists a split exact sequence

0→ Hn(X)⊗ G → Hn(X; G)→ Tor(Hn−1(X), G)→ 0

which induces isomorphisms

Hn(X; G) ∼= (Hn(X)⊗ G)⊕ Tor(Hn−1(X), G).

The proof is similar to the cohomology case.
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Hurewicz Theorem connects homotopy groups with homology groups. Recall that

H̃n(Sn) = Z.

Let us fix generators in ∈ H̃n(Sn) which are compatible with the isomorphisms

H̃n(Sn) = Hn(Dn, Sn−1) = H̃n−1(Sn−1).

Definition 20.1. For n ≥ 1, the Hurewicz map is

ρn : πn(X)→ Hn(X) by sending [ f : Sn → X]→ f∗(in).

Proposition 20.2. The Hurewicz map is a group homomorphism.

Proof. Given f , g : Sn → X representing [ f ], [g] ∈ πn(X), their product in πn(X) is represented by

Sn ϕ→ Sn ∨ Sn f∨g→ X ∨ X → X.

Here the map ϕ shrinks the equator Sn−1 of Sn to a point, and Sn/Sn−1 = Sn ∨ Sn. Apply Hn(−) we get

Hn(Sn)
ϕ∗→ Hn(Sn)⊕Hn(Sn)

f∗⊕g∗→ Hn(X)⊕Hn(X)
sum→ Hn(X).

Observe ϕ∗ : Hn(Sn)→Hn(Sn)⊕Hn(Sn) is the diagonal map x → x⊕ x. It follows that

ρn([ f ][g]) = f∗(in) + g∗(in) = ρn( f ) + ρn(g).

�

Given a group G, let Gab = G/[G, G] denote its abelianization. The quotient map

G → Gab

is called the abelianization homomorphism, which is an isomorphism if G is an abelian group.

Theorem 20.3 (Hurewicz Theorem). Let X be a path-connected space which is (n− 1)-connected (n ≥ 1). Then
the Hurewicz map

ρn : πn(X)→ Hn(X)

is the abelianization homomorphism.

Explicitly, Hurewicz Theorem has the following two cases.

1◦. If n = 1, then the Hurewicz map ρ1 : π1(X)→ H1(X) induces an isomorphism

π1(X)ab
∼=→ H1(X).

2◦. If n > 1, then the Hurewicz map ρn : πn(X)→ Hn(X) is an isomorphism.

Before we prove the Hurewicz Theorem, we first prepare some useful propositions.

Proposition 20.4. Let f : X → Y be a weak homotopy equivalence. Then

f∗ : Hn(X)→ Hn(Y)

is an isomorphism for all n.
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Proof. We can assume f is a cofibration. Then πn(Y, X) = 0 for all n.

Let σ = ∑i niσi represent an arbitrary element of Hn(Y, X) where

σi : ∆n → Y, ∂σ ∈ X.

We can use the simplexes of σi’s to build up a finite CW complex K with a subcomplex L, and a map

f : K → Y, ϕ(L) ⊂ X

such that [σ] = f∗[γ] is the image of an element [γ] ∈ Hn(K, L) under f . Since X ↪→ Y is an ∞-equivalence,
f is homotopic relative L to a map g that sends K into X.

L� _

��

// X� _

��
K

&&

f
88��

g
??

Y

So [σ] = g∗[γ] = 0. It follows that Hn(Y, X) = 0 for all n. This proves the proposition. �

Proposition 20.5. Let Y =
∨

Sn is a wedge of spheres (n ≥ 1). Then

πn(Y)→ H̃n(Y)

is the abelianization homomorphism.

Proof. If n > 1, then πn(Y) = H̃n(Y) =
⊕

Z. If n = 1. then π1(Y) is a free group, H1(Y) is a free abelian
group which is the abelianization of π1(Y).

�

Proof of Hurewicz Theorem. We can assume X is a CW complex. Otherwise we replace X by a weak homo-
topic equivalent CW complex, which has the same homotopy and homology groups by Proposition 20.4.
The construction of CW approximation also implies that we can assume

X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ · · · ⊂ X

where X0 = X1 = · · · = Xn−1 is a point. Since

πn(Xn+1) = πn(X), Hn(Xn+1) = Hn(X),

we can further assume X = Xn+1. By assumption

Xn =
∨

i
Sn

is a wedge of spheres. Let

ϕ : ä
α

Sn →
∨

i
Sn

be the gluing map for attaching (n + 1)-cells. Using the cellular approximation, we can assume ϕ is based

ϕ : Y =
∨
α

Sn →
∨

i
Sn.

Let

Z = Mϕ
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be the reduced mapping cylinder of ϕ, which is homotopy equivalent to Xn. X is the cofiber of ϕ

X = Z/Y.

We have the push-out diagram

Y
p
//

j
��

?

��
Z // X

where ? is the base point. Replacing ? by the reduced cone C?Y and consider the push-out

Y i //

j
��

C?Y

��
Z // X̃

Since j is an (n − 1)-equivalence and i is an n-equivalence, Homotopy Excision Theorem (Theorem 14.1)
implies

πn(Z, Y) = πn(X̃, C?Y) = πn(X) if n > 1.

This implies the exact sequence

πn(Y)→ πn(Z)→ πn(X)→ πn−1(Y) = 0 if n > 1.

For the case n = 1, Seifert-van Kampen Theorem implies that π1(X) is the quotient of π1(Z) by the normal
subgroup generated by the image of π1(Y).

On the other side, we have the homology exact sequence

Hn(Y)→ Hn(Z)→ Hn(Z, Y) = Hn(X)→ Hn−1(Y) = 0.

Now we consider the commutative diagram

πn(Y) //

��

πn(Z) //

��

πn(X) //

��

0

Hn(Y) // Hn(Z) // Hn(X) // 0

Proposition 20.5 implies that

πn(Y)→ Hn(Y) and πn(Z)→ Hn(Z)

are abelianization homomorphisms. Therefore πn(X)→ Hn(X) is also the abelianization homomorphism.

�

Example 20.6. The homology of Sn and Hurewicz Theorem implies that

πk(Sn) =

0 if k < n

Z if k = n.

In particular, the degree of a map f : Sn → Sn can be described by either homotopy or homology.

Hurewicz Theorem has a relative version as well.
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Theorem 20.7. Let (X, A) be a pair of path-connected spaces and A non-empty. Assume (X, A) is (n− 1)-connected
(n ≥ 2) and A is simply-connected. Then

Hn(X, A) = 0 for i < n

and the Hurewicz map
πn(X, A)→ Hn(X, A)

is an isomorphism.

Theorem 20.8 (Homology Whitehead Theorem). Let f : X → Y between simply connected CW complexes.
Assume

f∗ : Hn(X)→ Hn(Y)

is an isomorphism for each n. Then f is a homotopy equivalence.

Proof. We can assume X is a CW subcomplex of Y. Then

Hn(Y, X) = 0 for all n.

By Hurewicz Theorem,
πn(Y, X) = 0 for all n.

Therefore f is weak homotopy equivalence, hence a homotopy equivalence by Whitehead Theorem. �

Proposition 20.9. Every simply connected and orientable closed 3-manifold is homotopy equivalent to S3.

Proof. Let X be a simply connected and orientable closed 3-manifold. Then

H0(X) = Z, H1(X) = π1(X) = 0.

Since X is orientable, H3(X) = Z and Poincare duality holds (we will discuss in details later)

H2(X) = H1(X).

By the Universal Coefficient Theorem,

H1(X) = Hom(H1(X), Z)⊕ Ext(H0(X), Z) = 0.

So H2(X) = 0. By Hurewicz Theorem,
π3(X)→ H3(X)

is an isomorphism. Let f : S3 → X represent a generator of π3(X) = Z. Then

f∗ : H•(S3)→ H•(X)

are isomorphisms. It follows that f is a homotopy equivalence. �

Remark 20.10. The famous Poincare Conjecture asks that such X is homeomorphic to S3.
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Motivation

Many applications of (co)homology theory are reduced to the computation

H(C•, δ)

of (co)homologies of certain (co)chain complexes. Usually the differential δ is complicated, making the
(co)homology computation difficult. However, if we observe that ”part” of the differential δ is simple, say

δ = δ1 + δ2

while the computation of δ1-cohomology is easier to perform, then we would like to use the δ1-cohomology
to approximate and compute the full δ-cohomology. This is the idea of spectral sequence.

Let us motivate this idea by a standard example. Consider the double complex

K =
⊕

p,q≥0
Kp,q

which is equipped with two differentials δ1 : Kp,q → Kp,q+1

δ2 : Kp,q → Kp+1,q

such that

δ2
1 = δ2

2 = 0, δ1δ2 + δ2δ1 = 0.

δ2

δ1

δ2

δ1

δ2

δ1

δ2

δ1

q

p

Consider the total complex

Tot•(K), Totn(K) =
⊕

p+q=n
Kp,q

with the differential

D = δ1 + δ2.

Our assumption on δ1, δ2 implies that

D2 = 0.

Therefore (Tot•(K), D) indeed defines a cochain complex, and we are interested in

H•(Tot•(K), D).
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Let x be a representative of an element in Hm(Tot•(K), D). We can decompose x into

x = x0 + x1 + · · · , xi ∈ Ki,m−i.

The cocycle condition Dx = 0 is equivalent to

δ1x0 = 0

δ2x0 = −δ1x1

δ2x1 = −δ1x2
...

Let us formally write
x1“ = ”− δ−1

1 δ2x0, x2“ = ”− δ−1
1 δ2x1, · · ·

Here the inverse δ−1
1 does not exist and this expression is only heuristic. Then we would solve

x“ = ”
1

1 + δ−1
1 δ2

x0

while x0 represents a cocycle for (Tot•(K), δ1). Intuitively, we treat δ2 as a perturbation of δ1 and

D = (δ1 + δ2)“ = ”δ1(1 + δ−1
1 δ2).

So
Dx“ = ”δ1(1 + δ−1

1 δ2)
1

1 + δ−1
1 δ2

x0“ = ”δ1x0 = 0.

The above discussion is of course vague and heuristic. But it motivates the following idea: we can
construct a D-cocycle x by first looking at a δ1-cocycle x0 as a leading approximation, and then constructing
x1, x2, · · · order by order using information from H•(δ1). This leads to the following statements

1◦. If H•(δ1) = 0, then H•(D) = 0.
In fact, let x be a D-cocyle as above. Since δ1x0 = 0 and H•(δ1) = 0, we can find

y0 ∈ K0,m−1 such that x0 = δ1y0.

Replacing x by x− Dy0, we can assume x0 = 0 so x starts from x1. Then

Dx = 0⇒ δ1x1 = 0.

By the same reason, we can further kill x1 to assume that x starts from x2. Iterating this process, we
can eventually find y such that

x = Dy.

So x is a D-coboundary. It follows that H•(D) = 0.
2◦. If H•(δ1) 6= 0, then we need to understand

whether δ1xi+1 = −δ2xi is solvable.

This puts extra condition on the initial data x0 that allows to be an approximation of a D-cocycle.
For example, we want to solve

δ1x1 = −δ2x0.

Since
δ1(δ2x0) = −δ2δ1x0 = 0,

we know −δ2x0 is δ1-closed. The problem is whether this is δ1-exact. We can view

δ2 : H•(δ1)→ H•(δ1)
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as defining a cochain complex (H•(δ1), δ2), then the solvability of x1 asks that the class [x0] ∈ H•(δ1)

is in fact δ2-closed
δ2[x0] = 0.

Therefore the “2nd”-order approximation of a D-cohomolpgy is an element in

H•(H•(δ1), δ2).

This will be called the E2-page. Similarly, we will have E3-page, E4-page, etc, and eventually find
the full description of D-cohomologies. Such process is the basic idea of spectral sequence.

Spectral sequence for filtered chain complex

Spectral sequences usually arise in two situations

1◦. A Z-filtration of a chain complex: a sequence of subcomplexes · · · ⊂ Fp ⊂ Fp+1 ⊂ · · · .
2◦. A Z-filtration of a topological space: a family of subspaces · · · ⊂ Xp ⊂ Xp+1 ⊂ · · · .

We first discuss the spectral sequence for chain complexes.

Definition 21.1. An (ascending) filtration of an R-module A is an increasing sequence of submodules

· · · ⊂ Fp A ⊂ Fp+1 A ⊂ · · ·

indexed by p ∈ Z. We always assume that it is exhaustive and Hausdorff⋃
p

Fp A = A (exhaustive),
⋂
p

Fp A = 0 (Hausdorff).

The filtration is bounded if Fp A = 0 for p sufficiently small and Fp A = A for p sufficiently large. The
associated graded module GrF

• A is defined by

GrF
• (A) :=

⊕
p∈Z

GrF
p A, GrF

p A := Fp A/Fp−1 A.

A filtered chain complex is a chain complex (C•, ∂) together with an (ascending) filtration FpCi of each Ci

such that the differential preserves the filtration

∂(FpCi) ⊂ FpCi−1.

In other words, we have an increasing sequence of subcomplexes FpC• of C•.

Remark 21.2. There is also the notion of a descending filtration. We will focus on the ascending case here.

A filtered chain complex induces a filtration on its homology

Fp Hi(C•) = Im(Hi(FpC•)→ Hi(C•)).

In other words, an element [α] ∈ Hi(C•) lies in Fp Hi(C•) if and only if there exists a representative x ∈ FpCi

such that [α] = [x]. Its graded piece is given by

GrF
p Hi(C•) =

Ker(∂ : FpCi → FpCi−1)

Fp−1Ci + ∂Ci+1
.

Notation 21.3. In this section, our notation of quotient means the quotient of the numerator by its intersec-
tion with the denominator, i.e., A

B := A
A∩B .

Definition 21.4. Given a filtered R-module A, we define its Rees module as a submodule of A[z, z−1] by

AF :=
⊕
p∈Z

Fp A zp ⊂ A[z, z−1].
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Our conditions for the filtration can be interpreted as follows

1◦. increasing filtration: AF is a R[z]-submodule of A[z, z−1] and z : AF → AF is injective.
2◦. exhaustive: AF[z−1] := AF ⊗R[z] R[z, z−1] equals A[z, z−1].
3◦. Hausdorff:

⋂
p≥0

zp AF = 0 in A[z, z−1].

The associated graded module is given by

GrF
• (A) := AF/zAF.

Geometrically, we can think about A[z, z−1] as the space of algebraic sections of the trivial bundle on C∗

with fiber A. Then AF defines the extension of this bundle to C, whose fiber at 0 is precisely GrF
• (A).

Let (C•, ∂, F•) be a filtered chain complex. Let us denote its Rees module by

CF :=
⊕
p∈Z

FpC• zp ⊂ C•[z, z−1].

(CF, ∂) is also a subcomplex of (C•[z, z−1], ∂). This defines a map on homologies

H•(CF, ∂)→ H•(C•[z, z−1], ∂) = H•(C•, ∂)[z, z−1].

The image of H•(CF, ∂) defines a C[z]-submodule of H•(C•, ∂)[z, z−1]. It induces a filtration on H•(C•, ∂) as
described above. Our goal is to analyze the map

ϕ : H•(CF, ∂)→ H•(C•, ∂)[z, z−1]

in order to extract the information about this induced filtration on H•(C•, ∂).

Firstly

H•(CF, ∂) =
⊕
p∈Z

H•(FpC•, ∂)zp.

However, the z-action

z : H•(CF, ∂)→ H•(CF, ∂)

may not be injective. Those elements that are annihilated by zm for some finite m will be killed under ϕ. One
way to kill such elements is to look at im(zN) for N big enough. This motivates the following construction.

Let us define

Er :=
{x ∈ CF|∂x ∈ zrCF}

zCF + z1−r∂CF
.

Er can be viewed as the r-th order approximation. Er carries a differential

∂r : Er → Er, [x]→ z−r[∂x].

∂r is indeed well-defined. In fact, let zα + z1−r∂β represent an element in zCF + z1−r∂CF. Then

∂r(zα + z1−r∂β) = z1−r∂α which is zero as a class in Er.

Obviously, ∂2
r = 0. We can define its homology by

H(Er, ∂r) :=
ker ∂r

im ∂r
.

Claim. The homology of (Er, ∂r) is precisely Er+1

H(Er, ∂r) = Er+1.
130



21 SPECTRAL SEQUENCE

Proof. Assume [x] ∈ ker ∂r in Er. ∂r[x] = z−r[∂x] = 0 implies the existence α, β ∈ CF such that

∂x = zr(zα + z1−r∂β) = zr+1α + z∂β, ∂β ∈ zr−1CF.

We have ∂(x− zβ) = z1+rα, so [x− zβ] defines an element in Er+1. This class does not depend on the choice
of α, β. Therefore we have a natural map

f : ker ∂r → Er+1

which is clearly surjective.

Assume [x] = ∂r[y]. Then there exists u, v ∈ CF such that

x = z−r∂y + zu + z1−r∂v.

So

f ([x]) = [x− zu] = [z−r∂(y + zv)] = 0.

Therefore

im ∂r ⊂ ker f .

On the other hand, assume f ([x]) = 0. Then there exists u, v ∈ CF such that

x− zβ = zu + z−r∂v, ∂u = zrα.

We find [x] = ∂r[v]. Hence

ker f ⊂ im ∂r.

It follows that ker f = im ∂r. This proves the claim.

�

We can describe (Er, ∂r) explicitly in terms of components. Let us denote

(CF)p,q := FpCp+q.

There is a natural identification

CF =
⊕

p,q∈Z

(CF)p,q.

Similarly, we can decompose

Er =
⊕

p,q∈Z

Er
p,q

where

Er
p,q =

{
x ∈ FpCp+q|∂x ∈ Fp−rCp+q−1

}
Fp−1Cp+q + ∂Fp+r−1Cp+q+1

.

The differential ∂r acts on components by

∂r : Er
p,q → Er

p−r,q+r−1, x → ∂x.

E0 is given by

E0 = CF/zC f , E0
p,q = GrF

p Cp+q =
FpCp+q

Fp−1Cp+q
.

E1 is given by

E1 =
{x ∈ CF|∂x ∈ zCF}

zCF + ∂CF
= H(CF/zCF, ∂), E1

p,q = Hp+q(GrF
p C•).
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If the filtration of Ci is bounded for each i, then for any p, q and r >> 0,

Er
p,q =

{
x ∈ FpCp+q|∂x = 0

}
Fp−1Cp+q + ∂Cp+q+1

= Grp Hp+q(C•).

In this case, we say {Er}r converges to Gr•H(C•) and write

E∞ = Gr•H(C•).

Motivated by the above discussion, we now give the formal definition of spectral sequence.

Definition 21.5. A spectral sequence (of R-modules) consists of

• an R-module Er
p,q for any p, q ∈ Z and r ≥ 0;

• a differential ∂r : Er
p,q → Er

p−r,q+r+1 such that ∂2
r = 0 and Er+1 = H(Er, ∂r).

A spectral sequence converges if for any p, q, we have

Er
p,q = Er+1

p,q = · · · for r >> 0.

This limit will be denoted by E∞
p,q.

The following theorem follows directly from our discussion above.

Theorem 21.6. There is an associated spectral sequence for any filtered chain complex (C•, ∂, F•) where

Er
p,q =

{
x ∈ FpCp+q|∂x ∈ Fp−rCp+q−1

}
Fp−1Cp+q + ∂Fp+r−1Cp+q+1

and
∂r : Er

p,q → Er
p−r,q+r−1, x → ∂x.

The E1-page of the spectral sequence is
E1

p,q = Hp+q(GrF
p C•).

If the filtration of Ci is bounded for each i, then the spectral sequence converges and

E∞
p,q = Grp Hp+q(C•).

Spectral sequence for filtered cochain complex

The spectral sequence for filtered cochain complexes is similar. We will briefly summarize the result.

Definition 21.7. A filtered cochain complex is a cochain complex (C•, d) with a (descending) filtration

· · · ⊃ FpCi ⊃ Fp+1Ci ⊃ · · ·

of each Ci such that the differential preserves the filtration

d(FpCi) ⊂ FpCi+1.

In other words, we have a decreasing sequence of subcomplexes FpC• of C•.

The associated graded complex is
GrF

p C• = FpC•/Fp+1C•.

The convention for a special sequence in this case is

• an R-module Ep,q
r for any p, q ∈ Z and r ≥ 0;

• a differential dr : Ep,q
r → Ep+r,q−r+1

r such that d2
r = 0 and Er+1 = H(Er, dr).
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Theorem 21.8. There is an associated spectral sequence for any filtered cochain complex (C•, d, F•) where

Ep,q
r =

{
x ∈ FpCp+q|dx ∈ Fp+rCp+q+1}
Fp+1Cp+q + dFp−r+1Cp+q−1 .

and

dr : Ep,q
r → Ep+r,q−r+1

r , x → dx.

The E1-page of the spectral sequence is

Ep,q
1 = Hp+q(GrF

p C•).

If the filtration of Ci is bounded for each i, then the spectral sequence converges and

Ep,q
∞ = Grp Hp+q(C•).

Double complex

Let us come back to the double complex example discussed in the beginning

K =
⊕

p,q≥0
Kp,q

which is equipped with two differentials δ1 : Kp,q → Kp,q+1

δ2 : Kp,q → Kp+1,q

We want to compute the cohomology of the total complex

H•(Tot•(K), D), D = δ1 + δ2.

Let us define a descending filtration on K by

FpK =
⊕

m≥p,n≥0
Km,n.

q

p
F0

F1

This induces a descending filtration on Tor•(K) by

Fp Tor•(K) := Tor•(FpK)
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whose graded associated complex is

Grp Tor•(K) =
⊕
q≥0

Kp,q.

The E1 page of the spectral sequence is

Ep,q
1 = Hp,q

δ1
(K), d1 = δ2.

Here Hp,q
δ1

(K) is the δ1-cohomology for the double complex K, which is again double graded.

The E2 page of the spectral sequence is

Ep,q
2 = Hp,q

δ2
Hδ1(K).

An element of Ep,q
r is represented by an x0 ∈ Kp,q that can be extended to a chain

x = x0 + x1 + · · ·+ xr−1, xi ∈ Kp+i,q−i

such that

Dx ∈ Kp+r+1,q−r.

In other words, we can solve the following recursive equations up to xr−1

δ1x0 = 0

δ2x0 = −δ1x1

δ2x1 = −δ1x2
...

δ2xr−2 = −δ1xr−1.

The corresponding differential for the Er-page is

dr[x0] = [Dx] = [δ2xr−1].

x0

x1

· · ·

xr−1 Dx
δ2

dr

q

p
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Cellular chain complex revisited

Let X be a CW complex with cellular structure

X(0) ⊂ X(1) ⊂ · · · ⊂ X(n) ⊂ · · · .

We define an ascending filtration on the singular chain complex S•(X) by

FpS•(X) = S•(X(p)).

The E0-page is

E0
p,q = Grp(Sp+q(X)) =

Sp+q(X(p))

Sp+q(X(p−1))
= Sp+q(X(p), X(p−1)).

Therefore the E1-page computes the relative homology

E1
p,q = Hp+q(X(p), X(p−1)) =

Ccell
p (X) q = 0

0 q 6= 0

which gives precisely the cellular chains.

Ccell
0 Ccell

1 Ccell
2 · · · Ccell

p · · ·

0 0 0 · · · 0 · · ·

q

p

FIGURE 33. E1-page

By chasing the definition, we find that the differential ∂1 coincides with the cellular differential

∂ : Ccell
p (X)→ Ccell

p−1(X).

Therefore the E2-page is

E2
p,q =

Hcell
p (X) q = 0

0 q 6= 0

Hcell
0 Hcell

1 Hcell
2 · · · Hcell

p · · ·

0 0 0 · · · 0 · · ·

q

p

FIGURE 34. E2-page
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The shape of this E2-page implies that

∂2 = ∂3 = · · · = 0, =⇒ E2 = E3 = · · · = E∞.

This explains why the cellular homology computes the singular homology.

Leray-Serre spectral sequence

Let π : E→ B be a Serre fibration with fiber F and base B.

F // E

��
B

Assume B is a simply-connected CW complex. Then there is the Leray-Serre spectral sequence with E2-page

E2
p,q = Hp(B)⊗Hq(F)

that converges to Grp Hp+q(E).

The idea of this spectral sequence is that we can filter the singular chain complex of E such that it favors
for the computation of singular homology along the fiber first. Explicitly, we can use the cellular structure

B(0) ⊂ B(1) ⊂ · · · ⊂ B(n) ⊂ · · ·

to obtain a filtration of topological spaces for E

E(0) ⊂ E(1) ⊂ · · · ⊂ E(n) ⊂ · · ·

where E(n) is given the pull-back

E(n) //

��

E

��
B(n) // B

We will not give the details here, but instead illustrate its use by some examples.

Example 21.9. Consider the fibration (n ≥ 2)

ΩSn // PΩn

��
Sn

Here PΩn is the based path space of Sn. We have

Hp(Sn) =

Z p = 0, n

0 p 6= 0, n
Hk(PΩn) =

Z k = 0

0 k > 0

To arrive at H•(PΩn), the Leray-Serre spectral sequence must be of the form

E2 = E3 = · · · = En

where the only non-zero terms are in the shaded locations as in the figure below.
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q

p

0

n− 1

2n− 2

0 n

H0(ΩSn)

Hn−1(ΩSn)

H2n−2(ΩSn)

H0(ΩSn)

Hn−1(ΩSn)

H2n−2(ΩSn)

Furthermore, the maps

dn : H(n−1)k(ΩSn)→ H(n−1)(k+1)(ΩSn), k ≥ 0

must be isomorphisms in order to have E∞ = Gr H•(PΩn) = Z. We conclude that

Hi(ΩSn) =

Z i = k(n− 1)

0 otherwise

Example 21.10. We illustrate Serre’s approach to Hurewicz Theorem via spectral sequence.

Assume we have established Hurewicz Theorem for the n = 1 case π1 → H1. We prove by induction for
the n ≥ 2 case. Let n ≥ 2 and X be a (n− 1)-connected CW complex. Consider the fibration

ΩX // PX

��
X

The E2-page of the Leray-Serre spectral sequence is

q

p

Z

H1(ΩX)

H2(X)

FIGURE 35. E2-page
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Since PX is contractible, the map
H2(X)→ H1(ΩX)

must be an isomorphism. This shows

H2(X) = H1(ΩX) = π1(ΩX) = π2(X) (= 0 if n > 2).

We can iterate this until we arrive at

q

p

Z

Hn−1(ΩX)

Hn(X)

FIGURE 36. En-page

Again by the contractibility of PX, ∂r must induce an isomorphism

Hn(X) = Hn−1(ΩX)
induction

= πn−1(ΩX) = πn(X).

This is the Hurewicz isomorphism.
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Eilenberg-Zilber Theorem

Definition 22.1. Let (C•, ∂C) and (D•, ∂D) be two chain complexes. We define their tensor product C• ⊗D•
to be the chain complex

(C• ⊗ D•)k := ∑
p+q=k

Cp ⊗ Dq

with the boundary map ∂ = ∂C⊗D given by

∂(cp ⊗ dq) := ∂C(cp)⊗ dq + (−1)pcp ⊗ ∂D(dq), cp ∈ Cp, dq ∈ Dq.

This sign convention guarantees that

∂2 = 0.

Proposition 22.2. Assume C• is chain homotopy equivalent to C′•. Then C• ⊗ D• is chain homotopy equivalent to
C′• ⊗ D•.

Proof. Assume C•
f
//
C′•

g
oo define chain homotopy equivalence such that

1C′ − f ◦ g = ∂C′ ◦ s′ + s′ ◦ ∂C′

1C − g ◦ f = ∂C ◦ s + s ◦ ∂C

where

s : C• → C•+1, s′ : C′• → C′•+1.

Then our sign convention implies

1C′⊗D − ( f ⊗ 1D) ◦ (g⊗ 1D) = ∂C′⊗D ◦ (s′ ⊗ 1D) + (s′ ⊗ 1D) ◦ ∂C′⊗D

1C⊗D − (g⊗ 1D) ◦ ( f ⊗ 1D) = ∂C′⊗D ◦ (s⊗ 1D) + (s⊗ 1D) ◦ ∂C′⊗D

leaing to chain homotopy equivalence

C• ⊗ D•
f⊗1D //

C′• ⊗ D•
g⊗1D

oo .

�

We would like to compare the following two functors

S•(−×−), S•(−)⊗ S•(−) : Top×Top→ Ch•

which send

X×Y → S•(X×Y) and S•(X)⊗ S•(Y).

We first observe that there exists a canonical isomorphism

H0(X×Y) ∼= H0(X)⊗H0(Y).

The following theorem of Eilenberg-Zilber says that such initial condition determines a natural homotopy
equivalent between the above two functors which is unique up to chain homotopy.
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Theorem 22.3 (Eilenberg-Zilber). Then there exist natural transformations

S•(−×−)
F ..

S•(−)⊗ S•(−)
G

mm

which induce chain homotopy equivalence

S•(X×Y)
F ..

S•(X)⊗ S•(Y)
G

mm

for every X, Y and the canonical isomorphism H0(X×Y) ∼= H0(X)⊗H0(Y). Such chain equivalence is unique up
to chain homotopy. In particular, there are canonical isomorphisms

Hn(X×Y) = Hn(S•(X)⊗ S•(Y)), ∀n ≥ 0.

F, G will be called Eilenberg-Zilber maps.

Proof. Observe that any map ∆p (σx ,σy)→ X×Y factors through

∆p δp→ ∆p × ∆p σx×σy→ X×Y

where ∆p δp→ ∆p × ∆p is the diagonal map. This implies that a natural transformation F of the functor
S•(−×−) is determined by its value on {δp}p≥0. Explicitly

F((σx, σy)) = (σx ⊗ σy)∗F(δp).

Similarly, a natural transformation G of the functor S•(−)⊗ S•(−) is determined by its value on 1p ⊗ 1q

where 1p : ∆p → ∆p is the identity map. Explicitly, for any σx : ∆p → X, σy : ∆q → Y, we have

G(σx ⊗ σy) = (σx × σy)∗G(1p ⊗ 1q).

Therefore F and G are completely determined by

fn := F(δn) ∈
⊕

p+q=n
Sp(∆n)⊗ Sq(∆n), gn :=

⊕
p+q=n

G(1p ⊗ 1q) ∈
⊕

p+q=n
Sn(∆p × ∆q).

We will use the same notations as in Definition 17.4. Then

fn ◦ gn ∈ Sn(∆n × ∆n), gn ◦ fn ∈
⊕

p+q=n
(S•(∆p)⊗ S•(∆q))n.

Let us denote the following chain complexes

Cn = ∏
k≥0

(S•(∆k)⊗ S•(∆k))n+k, Dn = ∏
m≥0

( ⊕
p+q=m

Sn+p+q(∆p × ∆q)

)
with boundary map

∂ + ∂̃ : Cn → Cn−1, ∂ + ∂̃ : Dn → Dn−1

as follows. ∂ is the usual boundary map of singular chain complexes

∂ : (S•(∆k)⊗ S•(∆k))n → (S•(∆k)⊗ S•(∆k))n−1, ∂ : Sn(∆p × ∆q)→ Sn−1(∆p × ∆q).

∂̃ is the map induced by composing with the face singular chain ∂̃ = ∑k ∂∆k ∈ ∏k Sk−1(∆k)

∂̃ : Sp(∆k−1)⊗ Sq(∆k−1)→ Sp(∆k)⊗ Sq(∆k), σp ⊗ σq → ∂̃ ◦ σp ⊗ ∂̃ ◦ σq

and

∂̃ : Sn(∆p × ∆q)→ Sn(∆p+1 × ∆q)⊕ Sn(∆p × ∆q+1), σp × σq → (∂̃ ◦ σp)× σq + (−1)n−pσp × (∂̃ ◦ σq).
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Let f = ( fn) ∈ C0 and g = (gn) ∈ D0. Then it can be checked that

F, G are chain maps⇐⇒ f , g are 0-cycles in C•, D•

and natural chain homotopy of F, G are given by 0-boundaries. We claim that

Hn(C•) =

Z n = 0

0 n 6= 0
, Hn(D•) =

Z n = 0

0 n 6= 0
.

We sketch a proof here. In fact, there exists a spectral sequence with

E1-page : H(−, ∂)

E2-page : H(H(−, ∂), ∂̃)

and converging to ∂ + ∂̃-homology. We need to use a stronger version of convergence than Theorem 21.8,
which is guaranteed by the choice of direct product (so formal series is convergent) instead of direct sum in
the definition of Cn and Dn. We leave this delicate issue to the reader.

For C•, the E1-page H•(C•, ∂) is (using Proposition 22.2)

Hn(C•, ∂) = ∏
k≥0

Hn(S•(∆k)⊗ S•(∆k)) =


∏

k≥0
Z n = 0

0 n 6= 0.

It is not hard to see that ∂̃ acts on this E1-page as

∂̃ : ∏
k≥0

Z→ ∏
k≥0

Z (nk)k≥0 → (mk)k≥0

where mk =
1
2
(1 + (−1)k)nk−1.

In components, this can be represented by

0→ Z
0→ Z

1→ Z
0→ Z

1→ · · ·

whose ∂̃-homology is now Z concentrated at degree 0. It follows that E2 = E3 = · · · = E∞ and therefore

Hn(C•) =

Z n = 0

0 n 6= 0.

The computation in the case of D• is similar. This implies that the initial condition completely determines
chain maps F, G up to chain homotopy.

Let us now analyze the composition F ◦ G and G ◦ F. We similarly form the chain complexes

C′n = ∏
k≥0

Sn+k(∆
k × ∆k), D′n := ∏

m≥0

⊕
p+q=m

(S•(∆p)⊗ S•(∆q))n+p+q

with boundary map ∂ + ∂̃ defined similarly. Homology of C′• controls natural chain maps of S•(X × Y) to
itself up to chain homotopy, and similarly for D′•. We still have

Hn(C′•) =

Z n = 0

0 n 6= 0
, Hn(D′•) =

Z n = 0

0 n 6= 0
.

It follows that F ◦G and G ◦ F are both naturally chain homotopic to the identity map. The theorem follows.
�
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An explicit construction of G can be described as follows: given σp : ∆p → X, σq : ∆q → Y,

G(σp ⊗ σq) : ∆p × ∆q → X×Y

where we have to chop ∆p × ∆q into p + q-simplexes (similar to the decomposition of ∆n × ∆1 = ∆n × I as
in Proposition 15.16). This is the shuffle product.

An explicit construction of F can be given by the Alexander-Whitney map described as follows.

Definition 22.4. Given a singular n-simplex σ : ∆n → X and 0 ≤ p, q ≤ n, we define

• the front p-face of σ to be the singular p-simplex

pσ : ∆p → X, pσ(t0, · · · , tp) := σ(t0, · · · , tp, 0, · · · , 0)

• the back q-face of σ to be the singular q-simplex

σq : ∆q → X, σq(t0, · · · , tq) := σ(0, · · · , 0, t0, · · · , tq).

Definition 22.5. Let X, Y be topological spaces. Let πX : X × Y → X, πY : X × Y → Y be the projections.
We define the Alexander-Whitney map

AW : S•(X×Y)→ S•(X)⊗ S•(Y)

by the natural transformation given by the formula

AW(σ) := ∑
p+q=n

p(πX ◦ σ)⊗ (πY ◦ σ)q.

Theorem 22.6. The Alexander-Whitney map is a chain homotopy equivalence.

Proof. It can be checked that AW is a natural chain map which induces the canonical isomorphism

H0(X×Y)→ H0(X)⊗H0(Y).

Therefore AW is a chain homotopy equivalence by Eilenberg-Zilber Theorem. �

Künneth formula

Lemma 22.7. Let C• and D• be chain complex of free abelian groups. Then

H•(C• ⊗ D•) = H•(C• ⊗H•(D)).

Here H•(D) is viewed as a chain complex whose boundary map is zero.

Proof. Consider the exact sequence
0→ Zn → Dn → Bn−1 → 0

where Zn are cycles in Dn and Bn−1 are boundaries in Dn−1. Since D•’s are free, Zn and Bn−1 are also free
abelian groups. Let Z•, B• be chain complexes with zero boundary map. Then we have an exact sequence
of chain complexes

0→ Z• → D• → B•−1 → 0

whose associated long exact sequence of homologies splits into

0→ Bn → Zn → Hn(D•)→ 0.

Tensoring with C•, we find an exact sequence

0→ C• ⊗ Z• → C• ⊗ D• → C• ⊗ B•−1 → 0
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which induces a long exact sequence

· · · → Hn+1(C• ⊗ D•)→ Hn(C• ⊗ B•)→ Hn(C• ⊗ Z•)→ Hn(C• ⊗ D•)→ Hn−1(C• ⊗ B•)→ · · ·

Since B• → Z• are embeddings of free abelian groups, the maps

Hn(C• ⊗ B•) =
⊕

p+q=n
Hp(C•)⊗ Bq → Hn(C• ⊗ Z•) =

⊕
p+q=n

Hp(C•)⊗ Zq

are also injective. �

Theorem 22.8 (Algebraic Künneth formula). Let C• and D• be chain complex of free abelian groups. Then there
is a split exact sequence

0→ (H•(C)⊗H•(D))n → Hn(C• ⊗ D•)→ Tor(H•(C), H•(D))n−1 → 0.

Here Tor(H•(C), H•(D))k =
⊕

p+q=k
Tor(Hp(C), Hq(D)).

Proof. Consider the exact sequence
0→ Zn → Dn → Bn−1 → 0

where Zn are cycles in Dn and Bn−1 are boundaries in Dn−1. Since D•’s are free, Zn and Bn−1 are also free
abelian groups. Let Z•, B• be chain complexes with zero boundary map. Then we have an exact sequence
of chain complexes

0→ Z• → D• → B•−1 → 0

Tensoring with C• and since C•’s are free, we find an exact sequence of chain complexes

0→ C• ⊗ Z• → C• ⊗ D• → C• ⊗ B•−1 → 0

which induces a long exact sequence

· · · → Hn+1(C• ⊗ D•)→ Hn(C• ⊗ B•)→ Hn(C• ⊗ Z•)→ Hn(C• ⊗ D•)→ Hn−1(C• ⊗ B•)→ · · ·

On the other hand, we have
0→ Bq → Zq → Hq(D•)→ 0.

Tensoring with Hp(C•), we find

0→ Tor(Hp(C•), Hq(D•))→ Hp(C•)⊗ Bq → Hp(C•)⊗ Zq → Hp(C•)⊗Hq(D•)→ 0.

Since Bq, Zq’s are free,

Hp(C•)⊗ Bq = Hp(C• ⊗ Bq), Hp(C•)⊗ Zq = Hp(C• ⊗ Zq).

Summing over p, q, we find

0→ Tor(H•(C), H•(D))n → Hn(C• ⊗ B•)→ Hn(C• ⊗ Z•)→ (H•(C)⊗H•(D))n → 0.

Combining with the above long exact sequence, we arrive at the required short exact sequence

0→ (H•(C)⊗H•(D))n → Hn(C• ⊗ D•)→ Tor(H•(C), H•(D))n−1 → 0.

�

Theorem 22.9 (Künneth formula). For any topological spaces X, Y and n ≥ 0, there is a split exact sequence

0→
⊕

p+q=n
Hp(X)⊗ Hq(X)→ Hn(X×Y)→

⊕
p+q=n−1

Tor(Hp(X), Hq(Y))→ 0.

Proof. This follows from the Eilenberg-Zilber Theorem and the algebraic Künneth formula.

�
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23 CUP AND CAP PRODUCT

One of the key structure that distinguishes cohomology with homology is that cohomology carries an
algebraic structure so H•(X) becomes a ring. This algebraic structure is called cup product. Moreover,
H•(X) will be a module of H•(X), and this module structure is called cap product.

Let R be a commutative ring with unit. We have natural cochain maps

S•(X; R)⊗R S•(Y; R)→ Hom(S•(X)⊗ S•(Y), R)→ S•(X×Y; R)

where the first map sends ϕp ∈ Sp(X; R), ηq ∈ Sq(X; R) to ϕp ⊗ ηq where

ϕp ⊗ ηq : σp ⊗ σq → ϕp(σp) · ηq(σq), σp ∈ Sp(X), σq ∈ Sq(X).

Here · is the product in R. The second map is dual (applying Hom(−, R)) to the Alexander-Whitney map

AW : S•(X×Y)→ S•(X)⊗ S•(Y).

This leads to a cochain map

S•(X; R)⊗R S•(Y; R)→ S•(X×Y; R)

which further induces

H•(X; R)⊗R H•(Y; R)→ H•(X×Y; R).

Cup product

Definition 23.1. Let R be a commutative ring with unit. We define the cup product on cohomology groups

∪ : Hp(X; R)⊗R Hq(X; R)→ Hp+q(X; R)

by the composition

H•(X; R)⊗R H•(X; R)
∪

))

// H•(X× X; R)

∆∗

��
H•(X; R)

Here ∆ : X → X× X is the diagonal map.

Alexander-Whitney map gives an explicit product formula

(α ∪ β)(σ) = α(pσ) · β(σq), α ∈ Sp(X; R), β ∈ Sq(X; R), σ : ∆p+q → X.

Theorem 23.2. H•(X; R) is a graded commutative ring with uint:

1◦. Unit: let 1 ∈ H0(X; R) be represented by the cocyle which takes every singular 0-simplex to 1 ∈ R. Then

1∪ α = α ∪ 1 = α, ∀α ∈ H•(X; R).

2◦. Associativity:

(α ∪ β) ∪ γ = α ∪ (β ∪ γ).

3◦. Graded commutativity:

α ∪ β = (−1)pqβ ∪ α, ∀α ∈ Hp(X; R), β ∈ Hq(X; R).
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Proof. Unit of 1 is checked easily. Observe that the following two compositions of Eilenberg-Zilber maps
are chain homotopic (similar to Eilenberg-Zilber Theorem)

S•(X×Y× Z)→ S•(X×Y)⊗ S•(Z)→ S•(X)⊗ S•(Y)⊗ S•(Z)

S•(X×Y× Z)→ S•(X)⊗ S•(Y× Z)→ S•(X)⊗ S•(Y)⊗ S•(Z).

Associativity follows from the commutative diagram (R is hidden for simplicity)

H•(X)⊗H•(X)⊗H•(X) //

��

H•(X× X)⊗H•(X)

��

(∆×1)∗
// H•(X)⊗H•(X)

��
H•(X)⊗H•(X× X) //

(1×∆)∗

��

H•(X× X× X)
(∆×1)∗

//

(1×∆)∗

��

H•(X× X)

∆∗

��
H•(X)⊗H•(X) // H•(X× X)

∆∗ // H•(X)

Graded commutativity follows from the fact that the interchange map of tensor product of chain complexes

T : C• ⊗ D• → D• ⊗ C•

cp ⊗ dq → (−1)pqdq ⊗ cp

is a chain isomorphism. Therefore the two chain maps

S•(X×Y)→ S•(Y× X)→ S•(Y)⊗ S•(X)

S•(X×Y)→ S•(X)× S•(Y)
T→ S•(Y)⊗ S•(X)

are chain homotopic, again by the uniqueness in Eilenberg-Zilber Theorem.

Set Y = X we find the following commutative diagram

H•(X)⊗H•(X) //

T
��

H•(X× X)

=

��
H•(X)⊗H•(X) // H•(X× X).

which gives graded commutativity.

Alternately, all the above can be checked explicitly using Alexander-Whitney map �

Theorem 23.3. Let f : X → Y be a continuous map. Then

f ∗ : H•(Y; R)→ H•(X; R)

is a morphism of graded commutative rings, i.e. f ∗(α ∪ β) = f ∗α ∪ f ∗β. In other words, H•(−) defines a functor
from the category of topological spaces to the category of graded commutative rings.

Proof. The theorem follows from the commutative diagram

X
f

//

∆
��

Y

∆
��

X× X
f× f
// Y×Y.

�
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Theorem 23.4 (Künneth formula). Assumem R is a PID, and Hi(X; R) are finitely generated R-module, then there
exists a split exact sequence of R-modules

0→
⊕

p+q=n
Hp(X; R)⊗Hq(Y; R)→ Hn(X×Y; R)→

⊕
p+q=n+1

TorR
1 (H

p(X; R), Hq(Y; R))→ 0.

In particular, if H•(X; R) or H•(Y; R) are free R-modules, we have an isomorphism of graded commutative rings

H•(X×Y; R) ∼= H•(X; R)⊗R H•(Y; R).

Example 23.5. H•(Sn) = Z[η]/η2 where η ∈ Hn(Sn) is a generator.

Example 23.6. Let Tn = S1 × · · · × S1 be the n-torus. Then

H•(Tn) ∼= Z[η1, · · · , ηn], ηiηj = −ηjηi

is the exterior algebra with n generators. Each ηi corresponds a generator of H1(S1).

Proposition 23.7. H•(CPn) = Z[x]/xn+1, where x ∈ H2(CPn) is a generator.

Proof. We prove by induction n. We know that

Hk(CPn) =

Z k = 2m ≤ 2n

0 otherwise

Let x be a generator of H2(CPn). We only need to show that xk is a generator of H2k(CPn) for each k ≤ n.
Using cellular chain complex, we know that for k < n

H2k(CPn)→ H2k(CPk)

is an isomorphism. By induction, this implies that xk is a generator of H2k(CPn) for k < n. Poincare duality
theorem (which will be proved in the next section) implies that

H2(CPn)⊗H2n−2(CPn)
∪→ H2n(CPn)

is an isomorphism. This says that xn is a generator of H2n(CPn). This proves the proposition.

�

Cap product

Definition 23.8. We define the evaluation map

〈−,−〉 : S•(X; R)×R S•(X; R)→ R

as follows: for α ∈ Sp(X; R), σ ∈ Sp(X), r ∈ R,

〈α, σ⊗ r〉 := α(σ) · r.

The evaluation map is compatible with boundary map and induces an evaluation map

〈−,−〉 : Hp(X; R)⊗R Hp(X; R)→ R.

This generalized to

S•(X; R)⊗R S•(X×Y; R)→ S•(X; R)⊗R S•(X; R)⊗R S•(Y; R)
〈−,−〉⊗1→ S•(Y; R)

which induces
Hp(X; R)⊗R Hp+q(X×Y; R)→ Hq(Y; R).
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Definition 23.9. We define the cap product

∩ : Hp(X; R)⊗Hp+q(X; R)→ Hq(X; R)

by the composition

Hp(X; R)⊗Hp+q(X; R)
1⊗∆//

∩

**

Hp(X; R)⊗Hp+q(X× X; R)

��
Hq(X; R)

Theorem 23.10. The cap product gives H•(X; R) a structure of H•(X; R)-module.

Theorem 23.11. The cap product extends naturally to the relative case: for any pair A ⊂ X

∩ : Hp(X, A)⊗Hp+q(X, A)→ Hq(X)

∩ : Hp(X)⊗Hp+q(X, A)→ Hq(X, A)

Proof. Since S•(X, A) ⊂ S•(X), we have

∩ : S•(X, A)× S•(X)→ S•(X).

We model the cap product on chains via the Alexander-Whitney map. Then

∩ : S•(X, A)× S•(A)→ 0.

Therefore ∩ factors through

∩ : S•(X, A)× S•(X)

S•(A)
→ S•(X).

Passing to homology (cohomology) we find the first cap product. The second one is proved similarly using

∩ : S•(X)× S•(X)

S•(A)
→ S•(X)

S•(A)
.

�
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Definition 24.1. A topological manifold of dimension n , or a topological n-manifold, is a Hausdorff space
in which each point has an open neighborhood homeomorphic to Rn.

In this section, a manifold always means a topological manifold. We assume n > 0. For any point x ∈ X,
there exists an open neighborhood U and a homeomorphism φ : U → Rn. (U, φ) is called a chart around x.

Orientation

Definition 24.2. Let X be a n-manifold. x ∈ X be a point. A generator of

Hn(X, X− x) ∼= Hn(R
n, Rn − 0) ∼= Z

is called a local orientation of X at x.

For any x ∈ X, there are two choices of local orientation at x. We obtain a two-sheet cover

π : X̃ → X, where X̃ = {(x, µx)|µx is a local orientation of X at x}.

Here π is the natural projection (x, µx) → x. X̃ is topologized as follows. Let U be a small open ball in X.
Then for any x ∈ U, we have an isomorphism

Hn(X, X−U) ∼= Hn(X, X− x)

which induces a set theoretical identification

π−1(U) ∼= U ×Z2.

Then we give a topology on X̃ by requiring all such identifications being homeomorphisms. In particular,
π : X̃ → X is a Z2-covering map.

Definition 24.3. A (global) orientation of X is a section of π : X̃ → X, i.e., a continuous map s : X → X̃
such that π ◦ s = 1X . If an orientation exists, we say X is orientable.

Theorem 24.4. Let X be a connected manifold. Then X is orientable if and only if X̃ has two connected components.
In particular, a connected orientable manifold has precisely two orientations.

Proof. Assume X is orientable. Let s1 : X → X̃ be a section defining an orientation. Since π : X̃ → X is a
double cover, we can define another section s2 : X → X̃ such that {s1(x), s2(x)} = π−1(x) for any x ∈ X.
The covering property implies that s2 is also continuous, hence defining another orientation. The sections
s1, s2 lead to a diffeomorphism

X̃ = X×Z2 = X ä X.

Conversely, if X̃ has two connected component, then each one is diffeomorphic to X under the projection π

and so defines an orientation. �

Example 24.5. A simply connected manifold is orientable. This is because the covering of a simply con-
nected space must be a trivial covering.

Proposition 24.6. Let X be connected non-orientable manifold. Then X̃ is connected orientable.

Proof. X is non-orientable implies that X̃ has only one connnected component. Since π : X̃ → X is a
covering map, it is a local diffeomorphism and induces an isomorphism

Hn(X̃, X̃− x̃) = Hn(X, X− x), x = π(x̃).
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In particular, we have a canonical section

s : X̃ → ˜̃X, x̃ = (x, µx)→ (x̃, µx).

This shows that X̃ is connected orientable. �

Lemma 24.7. Let U ⊂ Rn be open. Then

Hi(U) = 0, ∀i ≥ n.

Proof. Let α ∈ Si(U) represent an element of [α] ∈ Hi(U). Let K ⊂ U be a compact subset such that
Supp(α) ∈ K. Equip Rn with a CW structure in terms of small enough cubes such that

K ⊂ L ⊂ U

where L is a finite CW subcomplex. We have a commutative diagram

Hi+1(R
n, L) //

��

Hi+1(R
n, U)

��
Hi(L) // Hi(U)

By construction, [α] ∈ Hi(U) lies in the image of Hi(L). But Hi+1(R
n, L) ∼= Hcell

i+1(R
n, L) = 0 for i ≥ n.

�

Lemma 24.8. Let U ⊂ Rn be open. Then the natural map

Hn(R
n, U)→ ∏

x∈Rn−U
Hn(R

n, Rn − x)

is injective.

Proof. This is equivalent to the injectivity of

H̃n−1(U)→ ∏
x∈Rn−U

H̃n−1(R
n − x).

Let α be a (n− 1)-chain representing a class [α]U in H̃n−1(U) which is sent to zero in the above map. We
can choose a big open cube B and finite small closed cubes D1, · · · , DN such that Di is not a subset of U and

Supp(α) ⊂ B− D1 ∪ · · · ∪ DN ⊂ U.

Then α represents a class

[α] ∈ H̃n−1(B− D1 ∪ · · · ∪ DN) ∼= Hn(B, B− D1 ∪ · · · ∪ DN).

By assumption, it is mapped to zero

H̃n−1(B− D1 ∪ · · · ∪ DN)→ H̃n−1(B− Di)

α→ 0

in each H̃n−1(B− Di) ∼= Hn(B, B− Di) ∼= Hn(B, B− xi) where xi ∈ Di −U. We next show that [α] = 0 in
H̃n−1(B− D1 ∪ · · · ∪ DN), hence [α]U = 0 in H̃n−1(U). This would prove the required injectivity.

Consider the Mayer-Vietoris sequence

H̃n(V)→ H̃n−1(B− D1 ∪ · · · ∪ DN)→ H̃n−1(B− D2 ∪ · · · ∪ DN)⊕ H̃n−1(B− D1)

where V = (B− D2 ∪ · · · ∪ DN) ∪ (B− D1) is open in Rn. By Lemma 24.7, H̃n(V) = 0. So

Hn−1(B− D1 ∪ · · · ∪ DN)→ H̃n−1(B− D2 ∪ · · · ∪ DN)⊕ H̃n−1(B− D1)
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is an injection. It follows that [α] is zero in Hn−1(B− D1 ∪ · · · ∪ DN) if and only if its image in H̃n−1(B−
D2 ∪ · · · ∪ DN) is zero. Repeating this process, we find [α] = 0. �

Fundamental class

Theorem 24.9. Let X be a connected n-manifold. For any abelian group G, we haveHi(X; G) = 0 i > n

Hn(X; G) = 0 if X is noncompact.

Proof. We prove the case for G = Z. General G is similar.

Step 1: X = U ⊂ Rn is an open subset. This is Lemma 24.7.

Step 2: X = U ∪V where U open is homeomorphic to Rn and V open satisfies the statement in the theorem.

Consider the Mayer-Vietoris sequence

H̃i(U)⊕ H̃i(V)→ H̃i(U ∪V)→ H̃i−1(U ∩V)→ H̃i−1(U)⊕ H̃i−1(V)

For i > n, we find Hi(U ∩ V) = 0 by Step 1 since V ∩U can be viewed as an open subset in Rn. Assume
X = U ∪V is not compact. We need to show

H̃n−1(U ∩V)→ H̃n−1(V)

is injective. Given x ∈ X, the noncompactness and connectedness of X implies that any simplex σ : ∆n →
U ∪V is homotopic to another singular chain which does not meet x. This implies that

Hn(U ∪V)→ Hn(U ∪V, U ∪V − x)

is zero map for any x ∈ X. Consider the commutative diagram, where x ∈ U −U ∩V

Hn(U ∪V)

))��
Hn(U ∪V, U ∪V − x)

∼=
��

Hn(U ∪V, U ∩V)

((

oo Hn(V, U ∩V)

��

oo

Hn(U, U − x) Hn(U, U ∩V) //

OO

oo H̃n−1(U ∩V)

��

// 0

H̃n−1(V)

Let α ∈ Hn(U, U ∩ V) maps to ker(H̃n−1(U ∩ V) → H̃n−1(V)). Diagram chasing implies that α maps to
zero in Hn(U, U − x) for any x ∈ U −U ∩V. Since x is arbitrary, this implies α = 0 by Lemma 24.8.

Step 3: General case. Let α ∈ Si(X) representing a class in Hi(X). We can choose finite coordinate charts
U1, · · · , UN such that Supp(α) ⊂ U1 ∪ · · · ∪UN . Then the class of α lies in the image of the map

Hi(U1 ∪ · · · ∪UN)→ Hi(X).

We only need to prove the theorem for U1 ∪ · · · ∪UN . This follows from Step 2 and induction on N. �

Definition 24.10. Let X be an n-manifold. A fundamental class of X at a subspace A ⊂ X is an element
s ∈ Hn(X, X− A) whose image

Hn(X, X− A)→ Hn(X, X− x)
150



24 POINCARÉ DUALITY

defines a local orientation for each x ∈ A. When A = X, s ∈ Hn(X) is called a fundamental clas of X.

Theorem 24.11. Let X be an oriented n-manifold, K ⊂ X be compact subspace. Then

(1) Hi(X, X− K) = 0 for any i > n.
(2) The orientation of X defines a unique fundamental class of X at K.

In particular, if X is compact, then there exists a unique fundamental class of X associated to the orientation.

Proof.
Step 1: K is a compact subset inside a cooridinate chart U ∼= Rn. Then by Lemma 24.7

Hi(X, X− K) ∼= Hi(U, U − K) ∼= H̃i−1(U − K) = 0 i > n.

Take a big enough ball B such that K ⊂ B ⊂ U. The orientation of X at the local chart U determines an
element of Hn(X, X− B) = Hn(U, U − B) which maps to the required fundamental class of X at K.

Step 2: K = K1 ∪ K2 where K1, K2, K1 ∩ K2 satisfy (1)(2). Using Mayer-Vietoris sequence

· · ·Hi+1(X, X−K1∩K2)→ Hi(X, X−K1∪K2)→ Hi(X, X−K1)⊕Hi(X, X−K2)→ Hi(X, X−K1∩K2)→ · · ·

we see K satisfies (1). The unique fundamental classes at K1 and K2 map to the unique fundamental class
at K1 ∩ K2, giving rise to a unique fundamental class at K1 ∪ K2 by the exact sequence

0→ Hn(X, X− K1 ∪ K2)→ Hn(X, X− K1)⊕Hn(X, X− K2)→ Hn(X, X− K1 ∩ K2)

Step 3: For arbitrary K, it is covered by a finite number of coordinates charts {Ui}1≤i≤N . Let Ki = K ∩Ui.
Then K = K1 ∪ · · · ∪ KN . The theorem holds for K by induction on N and Step 1, 2. �

Poincaré duality

Definition 24.12. Let K denote the set of compact subspaces of X. We define compactly supported coho-
mology of X by

Hk
c(X) := colim

K∈K
Hk(X, X− K)

where the colimit is taken with respect to the homomorphisms

Hk(X, X− K1)→ Hk(X, X− K2)

for K1 ⊂ K2 compact. In particular, if X is compact, then Hk
c(X) = Hk(X).

Recall that a map is called proper if the pre-image of a compact set is compact. The functorial structure
of compactly supported cohomology is with respect to the proper maps: let f : X → Y be proper, then

f ∗ : Hk
c(Y)→ Hk

c(X).

Example 24.13. Let X = Rn. Consider the sequence of compact subspaces B1 ⊂ B2 ⊂ B3 ⊂ · · · , where Bk

is the closed ball of radius k. Any compact subspace is contained in some ball. Therefore

Hi
c(R

n) = colim
k

Hi(Rn, Rn − Bk) = colim
k

H̃i−1
(Rn − Bk) = H̃i−1

(Sn−1) =

Z i = n

0 i 6= n
.

Theorem 24.14. Let X = U ∪V where U, V open. Then we have the Mayer-Vietoris exact sequence

· · · → Hk
c(U ∩V)→ Hk

c(U)⊕Hk
c(V)→ Hk

c(X)→ Hk+1
c (U ∩V)→ · · ·
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Let X be an oriented n-manifold. For each compact K, let ξK ∈ Hn(X, X − K) be the fundamental class
determined by Theorem 24.11. Taking the cap product we find

DK : Hp(X, X− K)
∩ξK→ Hn−p(X).

This passes to the colimit and induces a map

D : Hp
c (X)→ Hn−p(X).

Theorem 24.15 (Poincaré Duality). Let X be an oriented n-manifold. Then for any p,

D : Hp
c (X)→ Hn−p(X)

is an isomorphism. In particular, if X is compact then Hp(X) ∼= Hn−p(X).

Proof. We prove the theorem for all open subset U of X.

Step 1: If the theorem holds for open U, V and U ∩V, then the theorem holds for U ∪V.

This follows from Mayer-Vietoris sequence and the commutative diagram

// Hk
c(U ∩V) //

D
��

Hk
c(U)⊕Hk

c(V) //

D⊕D
��

Hk
c(U ∪V) //

D
��

Hk+1
c (U ∩V) //

D
��

· · ·

// Hn−k(U ∩V) // Hn−k(U)⊕Hn−k(V) // Hn−k(U ∪V) // Hn−k−1(U ∩V) // · · ·

Step 2: Let U1 ⊂ U2 ⊂ · · · and U = ∪iUi. Assume the theorem holds for Ui, then it holds for U.

This follows from the isomorphism

Hk
c(U) = colim

i
Hk

c(Ui), Hn−k(U) = colim
i

Hn−k(Ui).

Step 3: The theorem holds for an open U contained in a coordinate chart.

This follows by expressing U as a countable union of convex subsets of Rn.

Step 4: For any open U.

By Step 2, 3 and Zorn’s lemma, there is a maximal open subset U of X for which the theorem is true. By
Step 1, U must be the same as X. �
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25 LEFSCHETZ FIXED POINT THEOREM

In this section X will be an oriented connected compact n-dim manifold. [X] its fundamental class.

Intersection form

Poincaré duality gives an isomorphism

Hi(X)
∩[X]∼= Hn−i(X).

The cup product on cohomology has a geometric meaning under Poincaré duality as follows. Let Y, Z be
two oriented closed submanifold of X. Assume dim(Y) = i, dim(Z) = j, and Y intersects Z transversely
so that their intersection Y ∩ Z is manifold of dimension i + j− n. Y ∩ Z has an induced orientation. Let
[Y]∗ ∈ Hn−i(X) be the Poincaré dual of the fundamental class [Y] ∈ Hi(X). Then

[Y]∗ ∪ [Z]∗ = [Y ∩ Z]∗.

Therefore the cup product is interpreted as intersection under Poincaré duality.

An important case is when Y and Z have complementary dimension, i.e. i + j = n so that Y ∩ Z is a finite
set of points, whose signed sum gives the intersection number of Y and Z.

Definition 25.1. We define the intersection pairing

〈−,−〉 : Hi(X)×Hn−i(X)→ H0(X) ∼= Z.

Equivalently, we have the pairing on cohomology

〈−,−〉 : Hi(X)×Hn−i(X)→ Hn(X)
[X]∼= Z.

The intersection pairing is non-degenerate when torsion elements are factored out. In particular

Hi(X; Q)×Hn−i(X; Q)→ Q

is a non-degenerate pairing.

Example 25.2. T2 = S1 × S1. Y1 = S1 × {1}, Y2 = {1} × S1. Y1 ∩ Y2 is a point. This is dual to the ring
structure H•(T2) = Z[η1, η2], where ηi is dual to Yi.

Lefschetz Fixed Point Theorem

Let us consider the diagonal ∆ ⊂ X × X. Let {ei} be a basis of H•(X; Q), consisting of elements of pure
degree. Let ei be its dual basis of H•(X; Q) such that〈

ei, ej
〉
= δ

j
i .

First we observe that
[∆] ∈ Hn(X× X; Q) ∼=

⊕
p

Hp(X; Q)⊗Hn−p(X; Q)

is given by
[∆] = ∑

i
(−1)deg(ei)ei ⊗ ei.

This can be checked by intersecting with a basis of H•(X× X; Q).

Let f : X → X be a smooth map. Let

Γ f := {(x, f (x))|x ∈ X} ⊂ X× X
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be the graph of f . Let α ∈ Hp(X), β ∈ Hn−p(X). From the geometry of graph, we find

[Γ f ] · α× β = f∗α · β.

Applying this to [∆], we find

[Γ f ] · [∆] = ∑
i
(−1)|ei | f∗ei · ei = ∑

p
(−1)p Tr( f∗ : Hp(X; Q)→ Hp(X; Q)).

Definition 25.3. We define the Lefschetz number of f by

L( f ) := ∑
p
(−1)p Tr( f∗ : Hp(X; Q)→ Hp(X; Q)).

When Γ f and ∆ intersects transversely,

]Fix( f ) = [Γ f ] · [∆]

gives a signed count of fixed points of the map f . This gives the Lefschetz Fixed Point Theorem

]Fix( f ) = L( f ).

In particular, if the right hand side is not zero, there must exist a fixed point of f .

Example 25.4. Let n be even. Then any map f : CPn → CPn has a fixed point. In fact,

f ∗ : H•(CPn)→ H•(CPn)

is a ring map. Let x ∈ H2(CPn) be a generator, let f ∗(x) = kx for some k ∈ Z. Then

∑
p
(−1)p Tr( f∗|Hp(CPn ;Q)) =

n

∑
i=0

kn

is an odd number, hence not zero. By Lefschetz Fixed Point Theorem, f must have a fixed point.

Example 25.5. The Lefschetz number of the identity map id : X → X is precisely the Euler characteristic

L(id) = χ(X).

Consider the sphere S2, and the map

f : S2 → S2, x → x + v
|x + v| , v = (0, 0, 1/2).

f has two fixed points: north and south pole, and f is homotopy to the identify. We find

χ(S2) = L(id) = L( f ) = 2.

Example 25.6. Consider a compact connected Lie group G. Let g ∈ G which is not identity but close to
identity. Then multiplication by g has no fixed point, and it is hompotopic to the identity map. We find

χ(G) = 0.
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