INTRODUCTION TO ALGEBRAIC TOPOLOGY
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Category

In category theory, we will encounter many presentations in terms of diagrams. Roughly speaking, a
diagram is a collection of ‘objects” denoted by A,B,C,X,Y, -, and ‘arrows’ between them denoted by
f,8 -+, asin the examples

AL>B XLY
\Lg 81 \sz
N g

C 72w
We will always have an operation o to compose arrows. The diagram is called commutative if all the

composite paths between two objects ultimately compose to give the same arrow. For the above examples,
they are commutative if

h=gof fach=gog.
Definition 1.1. A category C consists of

1°. A class of objects: Obj(C) (a category is called small if its objects form a set).
We will write both A € Obj(C) and A € C for an object A in C.
2°. A set of morphisms: Hom¢ (A, B) for each A,B € Obj(C). An element f € Hom¢ (A, B) will be
called a morphism from X to Y, and denoted by

ALB or f:A—B.

When C is clear from the context, we will simply write Hom(A, B) for Hom¢ (A, B).
3°. A composition operation o between morphisms

Hom¢ (A, B) x Hom¢(B,C) — Hom¢(A,C), foreach A,B,C € Obj(C)
fxg—gof,

which will be denoted in terms of a diagram by

These are subject to the following axioms:

1°. Associativity: ho (go f) = (hog) o f holds, and will be denoted by h o g o f without ambiguity.
This property can be expressed in terms of the following commutative diagram

AL>B
\l hog
8
gof X

I

2°. Identity: for each A € Obj(C), there exists 14 € Hom¢ (A, A) called the identity element such that

fola=f=1z0f, VAL B,
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i.e. we have the following commutative diagrams

1
A2 A At p

N
X i N
B B
Definition 1.2. A subcategory C’ of C (denoted by C’ C C) is a category such that

1°. Obj(C’) C Obj(C)
2°. Homei (A, B) C Home (A, B), VA,B e Obj(C’)
3°. compositions in C’ coincide with that in C under the above inclusion.

C' is called a full subcategory of C if Hom¢/ (A, B) = Hom¢ (A, B), VA,B € Obj(C’).

Definition 1.3. A morphism f: A — B is called an isomorphism (or invertible) if there exists g: B — A
such that f o g = 1p and go f = 14, i.e. we have the following commutative diagram

1ACA/§\>BQ1B

Two objects A, B are called isomorphic if there exists an isomorphism f : A — B.

Example 1.4. We will frequently use the following categories.

1°. C = Set, the category of sets:
Obj(C) = {set}, Hom¢(A,B) = {setmap A — B}.
2°. C = Vecty, the category of vector spaces over a field k:
Obj(C) = {k-vector space}, Hom¢(A, B) = {k-linear map A — B}.

Vect, is a subcategory of Set, but not a full subcategory.
3°. C = Group, the category of groups:

Obj(C) = {group}, Hom¢(A, B) = {group homomorphism A — B}.
It has a full subcategory
Ab, the category of abelian groups.
4°. C = Ring, the category of rings:
Obj(C) = {ring}, Hom¢ (A, B) = {ring homomorphism A — B}.
Ring is a subcategory of Ab, but not a full subcategory. Ring has a full subcategory

CRing, the category of commutative rings.

The main object of our interest is

Top: = the category of topological spaces

e whose objects are topological spaces and
e whose morphisms f : X — Y are continuous maps.

Example 1.5. Let C and D be two categories. We can construct a new category C x D, called the product of

C and D, as follows.
3
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e An object of C x D is a pair (X,Y) of objects X € Cand Y € D.
o A morphism (f, g) : (Xl, Yl) — (Xz, Yz) isa pair Off S HomC(Xl, Xz),g S HOl’nD(Yl,Yz).
e Compositions are componentwise.

Quotient category and homotopy

Definition 1.6. Let C be a category. Let ~ be an equivalence relation defined on each Hom¢ (A, B), A, B €
Obj(C) and compatible with the composition in the following sense

fizf, sSi¥p=>81°fi~of.

The compatibility can be represented by the following diagram

//[1\1 8 8101
TN
A~ B~ cesa ~ c
N A N A ~_ 7
f 82 20/

We say ~ defines an equivalence relation on C. The quotient category C' = C/ ~ is defined by

o Obj(C') = Obj(C")
e Hom¢/(A,B) = Hom¢(A,B)/ ~, VA,B e Obj(C).

Exercise 1.7. Check the definition above is well-defined.

One of the most important equivalence relations in algebraic topology is the homotopy relation.

Let I = [0,1]. Let X x Y denote the topological product of X, Y € Top.

Definition 1.8. Two morphisms fy, f1 : X — Y in Top are said to be homotopic, denoted by fy ~ f1, if

JF: X xI— YSUChthatF‘XX{O} = fpand F|X><{1} = f1.

We will also write F : fy o~ fj or fy L f1 to specify the homotopy F. This can be illustrated as

fi
fo

Let f: X — Y be a morphism in Top. We define its homotopy class

[f]: {§ € Hom(X,Y) | g ~ f}.
We denote
[X,Y]: =Hom(X,Y)/ ~.

Theorem 1.9. Homotopy defines an equivalence relation on Top.

Proof. We first check that ~ defines an equivalence relation on morphisms.

e Reflexivity: Take F such that F |x.;= f forany t € I.
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e Symmetry: Assume we have a homotopy F : fy =~ f;. Then reversing I as

fi fo
I F —Y - 1 E — Y
fo fi

i.e. taking F(x,t) = F(x,1—t): X x [ — Y, gives f; =~ fy as required.
e Transitivity: Assume we have two homotopies F : fy ~ f; and G : fi ~ f,, then putting them
together gives F: fo ~ f, as

f2
1
. G fi £ E(x 1) = G(x,2t—1), 1/2<t<1;
2 - —Y ' F(x,2t),  0<t<1/2.
0

fo

We next check ~ is compatible with compositions.

Let fo, f1: X = Yand go, g1 : Y — Z. Assume f L f1and go S g1- Then

h

80
I| F — Y T = g0°fo~go°h

fo
fi &1

I|ixid|—=| G | —2Z =gofi~giofi

fi 30

By transitivity, we have proved the compatibility gp o fo ~ goo f1 ~ g1 ° f1- ]

We denote the quotient category of Top under homotopy relation ~ by
hTop = @ / ~

with morphisms Homyop (X, Y) = [X, Y].

Definition 1.10. Two topological spaces X, Y are said to have the same homotopy type (or homotopy equiv-

alent) if they are isomorphic in hTop.

Example 1.11. R and IR? are homotopy equivalent, but not homeomorphic. In other words, they are iso-
morphic in hTop, but not isomorphic in Top. As we will see, R' and S! are not homotopy equivalent.

There is also a relative version of homotopy as follows.
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Definition 1.12. Let A C X € Top and fy, f; : X — Y such that fo|4 = fila : A = Y. Wesay fo is
homotopic to f relative to A, denoted by

fox~ f1 rel A
if there exists F : X x I — Y such that

Flxxoy = for Flxxpy = fi, Flaxi = fola, VteL

We will also write F : fo ~ f; rel A or fy L f1 rel A to specify the homotopy F.
fi

I F LN

fo ft(A)

Functor

Definition 1.13. Let C, D be two categories. A covariant functor (resp. contravariant functor) F : C — D
consists of

1°. F: Obj(C) — Obj(D), A — F(A)
2°. Hom¢ (A, B) — Homp(F(A), F(B)),VA, B € Obj(C). We denote by

AL B— ra) ™ E)

(resp. Hom¢ (A, B) — Homp(F(B),F(A)), YA,B € Obj(C), denoted by

adip— B WEa). )
satisfying
1°. F(go f) = F(g) o F(f) (resp. F(go f) = F(f) o F(g)) for any composable morphisms f, g
At B ra) 2L pep)
—
8 F
gk F(g)o% i «
c F(C)

(resp. reversing all arrows in the diagram on the right).
20. F(].A) :1F(A)’ VAEOb](C)

F is called faithful (or full) if Hom¢ (A, B) — Homp(F(A), F(B)) is injective (or surjective) VA, B € Obj(C).
Example 1.14. The identity functor 1¢ : C — C maps

le(A)=A, 1e(f) =f
for any object A and morphism f.

Example 1.15. VX € Obj(C),

Hom(X,—): C —
A +— Hom(X,A)
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defines a covariant functor and
Hom(—,X): C —
A — Hom(A, X)

defines a contravariant functor.

Functors of these two types are called representable (by X).

Example 1.16. The forgetful functor Group — Set (mapping a group to its set of group elements) is repre-

sentable by the free group with one generator.

Example 1.17. Let G be an abelian group. Given X € Top, we will study its n-th cohomology H" (X; G)

with coefficients in G. It defines a contravariant functor
H"(—;G) : hTop — Set, X — H"(X;G).

We will see that this functor is representable by the Eilenberg-Maclane space K(G, n) if we work with the
subcategory of CW-complexes.

Example 1.18. We define a contravariant functor
Fun : Top — Ring, X — Fun(X) = Hompep(X,R).

Fun(X) are continuous real functions on X. A classical result of Gelfand-Kolmogoroff says that two com-
pact Hausdorff spaces X, Y are homeomorphic (i.e. isomorphic in Top) if and only if Fun(X) and Fun(Y)
are ring isomorphism (i.e. isomorphic in Ring).

Proposition 1.19. Let F : C — D be a functor. Suppose f: A — B is an isomorphism in C, then F(f) : F(A) —
F(B) is an isomorphism in D.

Proof. Exercise. O

Natural transformation

Definition 1.20. Let C, D be two categories and F,G : C — D be two functors. A natural transformation
T : F = G consists of morphisms

T = {14 : F(A) — G(A)|VA € Obj(C)}

such that the following diagram commutes for any A, B € Obj(C) (here f : A — Bif F, G are covariant and
f:B — Aif F,G are contravariant)
)
TA l B
)

G(A) —- G(B

T is called a natural isomorphism if 74 is an isomorphism for any A € Obj(C) and we write F ~ G.

Example 1.21. We consider the following two functors

GL,, (—)* : CRing — Group.

Given a commutative ring R € CRing, GL,(R) is the group of invertible n x n matrices with entries in R,

and R* is the multiplicative group of invertible elements of R. We can identity (—)* = GL;.
7
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The determinant defines a natural transformation
det: GL, — (—)~

where detg : GL,(R) — R* is the determinant of the matrix. The naturality of det is rooted in the fact
that the formula for determinant is the same for any coefficient ring. In this way, we can say precisely that
taking the determinant of a matrix is a natural operation.

Example 1.22. Let A,B € Cand f : A — B. We have

e A natural transformation
f« :Hom(—, A) = Hom(—, B)

for (contravariant) representable functors Hom(—, A), Hom(—, B) : C — Set.
e A natural transformation

f*:Hom(B,—) = Hom(A, —)
for (covariant) representable functors Hom(A, —), Hom(B, —) : C — Set.
Example 1.23. The above example is a special case of the following construction. Let A € C.
e Let F: C — Set be a contravariant functor. Then any ¢ € F(A) induces a natural transformation
Hom(—,A) = F

by assigning f € Hom(B, A) to F(f)(¢) € F(B).
e Let G : C — Setbe a covariant functor. Then any ¢ € G(A) induces a natural transformation

Hom(A,—-) =G
by assigning f € Hom(A, B) to G(f)(¢) € G(B).

Definition 1.24. Let F,G,H : C — D be functorsand 11 : F = G, > : G = H be two natural transforma-
tions. The composition 1; o 77 is a natural transformation from F to H defined by

(hoti)a:F(A) 3 G(A) 3 H(A), VA € Obj(C).

>

C G—— D compose to c noT D
. |
v
H H

Definition 1.25. Two categories C, D are called isomorphicif 3F : C = D,G : D — Csuch that Fo G =
1p,G o F = 1¢. They are called equivalentif 3F : C —+ D,G: D — Csuchthat FoG ~1p,GoF ~ 1. In
this case, we say F : C — D gives an isomorphism/equivalence of categories.

In applications, isomorphism is a too strong condition to impose for most interesting functors. Equiva-
lence is more realistic and equally good essentially. The following proposition is very useful in practice.

Proposition 1.26. Let F : C — D be an equivalence of categories. Then F is fully faithful.
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Functor Category
Definition 1.27. Let C be a small category, and D be a category. We define the functor category Fun(C, D)

e Objects: functors from C to D

F:C—D.

e Morphisms: natural transformations between two functors (which is indeed a set since C is small).

The following Yoneda Lemma plays a fundamental role in category theory and applications.
Theorem 1.28 (Yoneda Lemma). Let C be a category and A € C. Denote the two functors
ha =Homeg(—,A):C — Set, h® = Home(A,—):C — Set.
1°. Contravariant version: Let F : C — Set be a contravariant functor. Then there is an isomorphism of sets
Homg,n(c set) (14, F) = F(A).

This isomorphism is functorial in A.
2°. Covariant version: Let G : C — Set be a covariant functor. Then there is an isomorphism of sets

HOM (¢ set (hA,G) ~ G(A).

This isomorphism is functorial in A.

The precise meaning of functoriality in A is that we have isomorphisms of functors C — Set

HOMEn ¢ set) (h(_),F> =~ F(~), Hompyn(csen (h(*),c) ~ G(-).

The required isomorphisms in the above Yoneda Lemma are those maps described in Example 1.23.

Duality

Many concepts and statements in category theory have dual descriptions. It is worthwhile to keep eyes
on such dualities. Roughly speaking, the dual of a category-theoretical expression is the result of reversing
all the arrows for morphisms, changing each reference to a domain to refer to the target (and vice versa),
and reversing the order of composition.

For example, let C for a category. We can define its opposite category C°P by declaring

e Obj(CP) = Obj(C);
e f: A — Bisamorphismin C°P if and only if f : B — A is a morphism in C;
o the composition of two morphisms g o f in C°P is the same as the composite f o gin C.

A contravariant functor F : C — D is the same as a covariant functor F : C°? — D. With this help, we
can work entirely with covariant functors or contravariant functors. For example, the two statements in

Yoneda Lemma are actually the same if we consider opposite categories.
9
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An another example, we will often consider the lifting problem by finding a map F : X — E such that

the following diagram is commutative

E
7
F
7 ir’
/
B

X —>

The dual problem is the extension problem by finding a map G such that the dual diagram is commutative

E

G//T,
§ j
»

X<—8B

Adjunction
Let C, D be two categories, and let L : C — D, R : D — C be two (covariant) functors. The rules
(A,B) - Homp(L(A),B), (A,B) - Hom¢(A,R(B)), A € 0bj(C), B € Obj(D)

define two functors
Homp(L(—), —),Hom¢(—,R(—)): C°P x D — Set.

We say L and R are adjoint to one another (more precisely, L is the left adjoint, R is the right adjoint), if

there is a natural isomorphism
©: Homp(L(~), ) = Home (—, R(—));
that is, for each A € Obj(C), B € Obj(D), we have a set isomorphism
Tqp : Homp(L(A), B) = Hom¢ (A, R(B))
and this isomorphism is functorial both in A and in B. We sometimes write adjoint functors as

L:C — D:R

Example 1.29 (Free vs Forget). Let X be a set, and F(X) = @ Z denote the free abelian group generated

xeX
by X. This defines a functor

F:Set — Ab, X — F(X).
Forgetting the group structure defines a functor (such functor is often called a forgetful functor)
G:Ab — Set, A — A.
These two functors are adjoint to each other
F:Ab —/— Set:G.

In fact, many “free constructions” in mathematics are left adjoint to certain forgetful functors.

Proposition 1.30. Let L:C —— D:R beadjoint functors. Then there are natural transformations

l¢c = RoL LoR = 1p.

Proof. Given A € C, the required morphism A — RL(A) corresponds to the identity 1;(4) : L(A) — L(A)

under adjoint. The construction of L o R = 1y is similar.

O

10
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2 FUNDAMENTAL GROUPOID
Path connected component 77
Definition 2.1. Let X € Top.

e Amap v : I — Xis called a path from (0) to y(1).
e We denote 7! be the path from (1) to 7(0) defined by v~ (t) = y(1 —¢t)
e We denote iy, : I — X be the constant map to xy € X.

X X

FIGURE 1. A path v in a topological space X and its inverse

Let us introduce an equivalence relation on X by
Xp ~ X1 <= 3 a path from x( to x1.
Remark. Check this is an equivalence relation.
We denote the quotient space
mo(X) = X/ ~
which is the set of path connected components of X.

Theorem 2.2. 71p: hTop — Set defines a covariant functor.

Proof. Exercise. O

Corollary 2.3. If X, Y are homotopy equivalent, then mo(X) = mo(Y).

Proof. Applying Proposition 1.19 to the functor 71y : hTop — Set. O

Path category / fundamental groupoid
Definition 2.4. Let v : I = X be a path. We define the path class of y by

[ =4{7:1— X|y~%7 relol = {0,1}}.

FIGURE 2. In a path class, F: ¢ ~ 4 reldl

[7] is the class of all paths that can be continuously deformed to y while fixing the endpoints.
11
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Definition 2.5. Let 1,72 : [ — X such that 1(1) = 72(0). We define the composite path
Yoxy1: I =X
by

71(2t) 0<t<1/2
Yoxvi(t) =
12t—1) 1/2<t<1,

cf. Figure 2.5.

T T2

FIGURE 3. Composition of paths

Proposition 2.6. Let f1, f2,$1,82 be paths, such that f;(1) = ¢;(0), [f1] = [f2], [g1] = [g2]. Then
81+ A1 = [82% fal.

Proof. We illustrate the proof as the following, where F: f; ~ f, and G: g1 ~ g».

A & g7
o= LT

fo &

We conclude that * is well-defined for path classes:
[g* f] = 8] x [f]-
Proposition 2.7 (Associativity). Let f,g,h: I — X with f(1) = g(0) and g(1) = h(0). Then
([1) > [81) * [f] = [H] = (Ig]  [£1)-
Proof. We illustrate the proof as follows

W ([« = f & n

12
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O
Proposition 2.8. Let f: I — X with endpoints f(0) = xg and f(1) = x1. Then
[ lixe] = [f] = lim] % [f]:
Proof. We only show the first equality, which follows from the figure below.
by f
X0
X
f
O

Definition 2.9. Let X € Top. We define a category I1; (X) as follows:

e Obj(IT;(X)) = X.
e Homyy, (x) (%o, x1)=path classes from xj to x;.

o 1y = iy,.
The propositions above imply IT; (X) is a well-defined category. IT;(X) is called the path category or
fundamental groupoid of X.
Groupoid

Definition 2.10. A category where all morphisms are isomorphisms is called a groupoid. All groupoids
form a category Groupoid.

Example 2.11. A group G can be regarded as a groupoid G with

e Obj(G) = {*} consists of a single object.
e Homg(x,x) = G and composition is group multiplication.

Thus we have a fully faithful functor Group — Groupoid.

Let C be a groupoid, and define the set
ITo(€) = Obj(C)/ ~,

where A ~ Bifand only if 3 f: A — B in C. We can view I1y(C) as a (discrete) category whose objects are
its elements with only identity morphisms. Then C — Ily(C) is a functor (path connected component). We
say C is path connected if I'Ty(C) is one point.

Lemma 2.12. X is path connected if and only if I1o(X) is path connected.

Recall that ! is the inverse of 1.
Theorem 2.13. Let y: I — X with endpoints y(0) = xo and (1) = x1. Then
[ =[], and [y]x (7] = [Ly).

In other words, all morphism in Iy (X) are isomorphisms and thus ‘ Iy (X) is a groupoid. ‘

13
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Proof. Lety,: I — X such that 7, (t) = v(tu). The following figure gives the homotopy 7!
vy !
e | v
u
L} X
/YO = ixg

Exercise 2.14. Use the following figure to give another homotopy 7! x ¢ =~ 1, for Theorem 2.13.

ix,
Definition 2.15. Let C be a groupoid. Let A € Obj(C), we define its automorphism group by

Autc(A) ;== Homg (A, A).

Note that this indeed forms a group.

Forany f : A — B, it induces a group isomorphism
Adf : Autc<A) — Aut¢(B)
g fogof.

Here is a figure to illustrate

f
Adf:maps §C A to §C A

—1
This naturally defines a functor

C — Group by assigning A~ Autc(A), f+> Adf.

Specialize this to topological spaces, we find a functor

IT1(X) — Group |

Definition 2.16. Let xy € X, the group
1 (X, x0) := Autyy, (x) (o)
is called the fundamental group of the pointed space (X, x).
Theorem 2.17. Let X be path connected. Then for xg, x1 € X, we have a group isomorphism

m (X, x0) = (X, x1).

Ky 1y,

14
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Proof. Consider the functor Iy (X) — Group described above. Since X is path connected and IT;(X) is a
groupoid, any two points xy and x; are isomorphic in IT; (X). By Proposition 1.19, 111 (X, xg) = 1 (X, x1).
(]

In the path connected case, we will simply denote by 711 (X) the fundamental group without mentioning
the reference point.

Let f : X — Y be a continuous map. It defines a functor

I (f) : I1(X) — IT3(Y) by assigning x — f(x), [y]+— [fov]

Proposition 2.18. I1; defines a functor

IT; : Top — Groupoid |,

that sends X to TT;(X).

Proof. Exercise. O
Proposition 2.19. Let f,g : X — Y be maps which are homotopic by F : X x I — Y. Let us define path classes

T = [Flax1] € Homyy, (v (f(x), g(x)),

o
8

Tx4 F F s Y
f

Then T defines a natural transformation
r: 1L (f) — I (g)

Proof. Letr: I — X with r(t) = x;. We only need to show that the following diagram is commutative at the
level of path classes:

f) = L)) L)) = f)
g(x0) = I (g)(x0) gor I11(8)(x1) = g(x1)

The composition F o (r x I) gives the following diagram:

gor
Txo WLy
for
which implies that [g o 7]  [Ty,] = [Ty, ] * [f 0 1] as required. O
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This proposition can be pictured by the following diagram

I
Top —— Groupmd

6motop> <nat trans, >

The following theorem is a formal consequence of the above proposition

Theorem 2.20. Let f : X — Y be a homotopy equivalence. Then
I (f) : Th(X) =TTy (Y)
is an equivalence of categories. In particular, it induces a group isomorphism

(X, x0) = 1 (Y, f(x0)),

Proof. Let g: Y — X represents the inverse of f in hTop. Applying Il to fog ~ 1y and go f ~ 1x, we
find IT; (f) o I11(g) and Iy (g) o Il (f) are naturally equivalent to identity functors. Thus the first statement

follows. The second statement follows from Proposition 1.26. O

Proposition 2.21. Let X, Y € Top. Then we have a canonical isomorphism of categories
I (X xY)=TL(X) x L (Y).
In particular, for any xo € X,yo € Y, we have a group isomorphism
(X % Y, x0 X yo) = 11 (X, x0) x 71(Y, yo).

Example 2.22. For a point X = pt, 711 (pt) = 0is trivial. It it not hard to see that R" is homotopy equivalent
to a point. It follows that
m(R") =0 n>0.
Example 2.23. As we will see,
m(SY) =27, and m(S")=0,Yn>1.
Example 2.24. Let T" = (S!)" be the n-dim torus. Then
m(T") =2Z".
Example 2.25 (Braid groups). Artin’s braid group Br,; of n strings can be realized as mapping class group
(symmetry group) of a disk of n punctures. It has the following finite presentation:

Bry = (b1,...,by_1| bbb =bbib; V|j—il=1,
bibj =bib;  V|j—il>1).
Braid groups can be also realized as fundamental groups.
Let X € Top, the nh (ordered) configuration space of X is the set of n pairwise distinct points in X:
Conf,(X): ={x=(xq,...,xy) € X" | x; # xj, Vi £t
There is a natural action of the permutation group S, on Conf, (X) given by
Su x Conf, (X) — Conf,(X)

(0,x) —> 0(x) = (Xp(1), Xo(2)r - - 1 Xor(n))-
16
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The unordered configuration space of X is the orbit space of this action:
UConf,(X) = Conf,(X)/S,.
A classical result says

Bry, = 71 (UConf,(IR?)) 2 71; (UConf, (D?)).

Moreover, elements in this (fundamental) group can be visulized as braids in R3 as follows. Fix n distinct
points Z, - -+, Z, in R%. A geometric braid is an n-tuple ¥ = (¢4, ..., ¢,,) of paths
¥i: 0,1 = R2x I CR3
such that
o 9i(0) = Z; x {0};
e ¢i(1) = Z,(;) x {1} for some permutation v of {1,...,n};
o {1(t),...,¥u(t)} are distinct points in R? x {t}, for0 < t < 1.

The product of geometric braids follows the same way of products of paths (in the fundamental group
setting). The isotopy class of all braids on IR? with the product above form the braid group. See Figure 4.

FIGURE 4. Classical braids
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3 COVERING AND FIBRATION

3 COVERING AND FIBRATION

Covering and Lifting

Definition 3.1. Let p : E — B be in Top. A trivialization of p over an open set U C B is a homeomorphism
@:p~1(U) — U x Fover U, i.e. , the following diagram commutes

p=l(U) 4 UxF

N

p is called locally trivial if there exists an open cover U of B such that p has a trivialization over each open
U € U. Such p is called a fiber bundle, F is called the fiber and B is called the base. We denote it by

F—-E—B

where there is no ambiguity from the context. If we can find a trivialization of p over the whole B, then E is
homeomorphic to F x B and we say p is a trivial fiber bundle.

Example 3.2. The projection map
R™™ = R", (x1,+, Xn, o Xnem) > (X1, 7, )
is a trivial fiber bundle with fiber R™.
Example 3.3. A real vector bundle of rank n over a manifold is a fiber bundle with fiber ~ IR".

Example 3.4. We identify S?"*! as the unit sphere in C" ! parametrized by

SP = {z9,21, -+ ,zn € C" M |zo* + |21 P+ -+ - + |z = 1}

52n+l

There is a natural S'-action on given by

e (zo,++ ,zn) — (eiezo,~~~ ,eiezn), e? e sl

This action is free, and the orbit space can be identified with the n-dim complex projective space CIP”
SZVH—1/51 o C]Pi’l _ (CTH-] o {0})/0:*

Then the projection map S?**! — CIP" is a fiber bundle with fiber S'. It is a nontrivial fact that they are not
trivial fiber bundles. The case when n = 1 gives the Hopf fibratioin

st — s 5 52 = cp!

which is particularly interesting. In this case, the projection sends (zg,z1) € S® C C? to zo/z; € S* =
C U {c0}. In polar coordinates, we have z; = r]'eief for 12+ 73 = 1 and p(z0,21) = (ro/r1)el® =0, For
a fix p = ro/r1, we obtain a torus T, in S>. When identifying S* with the compatification of R® (or con-
sidering the stereographic projection S*> — RR3), we have the Figure 5 to visualize the foliation of R3 by
these tori T, where Ty degenerates to the unit circle on xy-plane of R® and T degenerates to z-axis. Each
S!-fiber is a slope 1 simple closed curve on one of the tori T}, and the image of the projection is exactly the
compatification S? of the xy-plane of R>.

Definition 3.5. A covering (space) is a locally trivial map p : E — B with discrete fiber F (cf. Figure 6). A
covering map which is a trivial fiber bundle is also called a trivial covering. If we would like to specify the
fiber, we call it a F-covering. If the fiber F has n points, we also call it a n-fold covering.

18



3 COVERING AND FIBRATION

FIGURE 5. A visualization of Hopf fibration

pH(U)~UxF

1
Ty

FIGURE 6. Trivialization (left) and covering (right)

00

FIGURE 7. The Z-covering of S!

Example 3.6. The map exp : R! — S!, t — €27t is a Z-covering, cf. Figure 7. If U = S' — {—1}, then
1

_ 1
exp (U)= | | (n— E'n+§)'
nezZ

Example 3.7. The map S' — S, ¢2™0 1 (2710 ig an |n|-fold covering, for n € Z — {0}.
Example 3.8. The map C — C, z — z", is not a covering (why?). But

e the map C* — C*, z — 2", is an |n|-covering, where C* = C — {O}and n € Z — {0}.
e the map exp : C — C*, z > ¢*™? is a Z-covering.

19



3 COVERING AND FIBRATION

Example 3.9 (From Hatcher). The figure-8

e

has two coverings as follows (the left is a 2-fold (or double) covering and the right is a 3-fold covering).
b b a
b b a

The 4-regular tree is its universal cover (a covering which is simply connected), see Figure 8.

er

T
+H

s
-

o g
I_’_ +I
S

FIGURE 8. 4-regular tree

Example 3.10. Recall that the number of holes (genus) and number of boundary components determine the
homeomorphism type of a closed oriented topological surface. Denote by S, the surface with genus ¢ and
b boundary components.

o The surface Sy admits a 7-fold covering from Sy; o, cf. Figure 9.
e In general, S, ;, admits a m-fold covering from S;,¢41,mb-
Example 3.11. Denote by RIP" the real projective space of dimension #, i.e.
RP" = R"*! — {0} /(x ~ tx), VteR—{0},xc R"" —{0}.
Let 5" be the n-sphere. Then there is a natural double cover S” — RIP".
Example 3.12 (Branched double cover). Figure 10 shows a branched double cover of a disk
11 %y — D?,

branching at  points. Namely, when deleting those 7 (red) points (denoted by A) from both ¥, and D?, we
obtain a 2-fold covering:
2 \A ZL DA\A
20



3 COVERING AND FIBRATION

*%

FIGURE 9. A 7-covering

v

FIGURE 10. The Birman-Hilden double cover via the twisted surface

with a bijection 1: A — A on A. This can be used to show the homeomorphism in Figure ?? (it is a special
case of Figure 10 for n = 3. In general, it has genus ¢ = | 7| — 1 with b = n — 2¢ boundary components.)

FIGURE 11. The normal view of the branched double cover of the punctured disk
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3 COVERING AND FIBRATION

Definition 3.13. Letp: E — B, f : X — B. Alifting of f along pisamap F: X — EsuchthatpoF = f
E
7

F

.’ ip

/

X —B
f

Lemma 3.14. Let p : E — B be a covering. Let

(x,x) € ExXE|x € E}
(x,y) € Ex E|p(x) = p(y)}-

D ={
Z=A

Then D C Z is both open and closed.

Proof. Exercise. O

Theorem 3.15 (Uniqueness of lifting). Let p : E — B be a covering. Let Fy,F; : X — E be two liftings of f.
Suppose X is connected and Fy, Fy agree somewhere. Then Fy = Fy.

Proof. Let D, Z be defined in Lemma 3.14. Consider the map F = (Fy, F;) : X — Z C E x E. By assumption,
we have F(X) N D # @. Moreover, Lemma 3.14 implies that F~1(D) is both open and closed. Since X is
connected, we find F~1(D) = X which is equivalent to Fy = F;.

X Fy
Y\
/ ——E
N
E——B

Fibration

Definition 3.16. A map p : E — B is said to have the homotopy lifting property (HLP) with respect to X if
for any maps f : X — Eand F: X x [ — Bsuch that po f = F|xx {0}, there exists a lifting F of F along p
such that F|yx, 0y = f, i.e., the following diagram is commutative

Xx {0} L F
/’f
3F -
// p
Ve
Ve

Xx1I B

Definition 3.17. A map p : E — B is called a fibration (or Hurwitz fibration) if p has HLP for any space.

Theorem 3.18. | A covering is a fibration ‘

22



3 COVERING AND FIBRATION

Proof. Letp:E — B,f:X — B,f: X — E,F: X x I — Bbe the data as in Definition 3.16. We only need to
show the existence of F, for some neighbourhood Ny of any given point x € X.

B

s
N, x 1 -

In fact, for any two such neighbourhoods Ny and N, with Ny "Ny = Ny # @, we have E, |N0 and l:"y |N0
agree at some point on f |y, and hence agree everywhere in Ny by the uniqueness of lifting (Theorem 3.15).
Thus {F; | x € X} glue to give the required lifting F.

Next, we proceed to prove the existence. Since I is compact, given x € X we can find a neighbourhood
Ny and a partition
O=ty<h < - <ty=1
such that p has a trivialization over open sets U; D F(Ny x [t;, ti11]). Now we construct the lifting F, on
Ny X [to, tg], for 1 < k < m, by induction on k.
e For k = 1, the lifting F, on Ny x [fo, 1] to one of the sheets of p~!(U}) is determined by f N x {0}

—~—K

p () = U, (W)

NJ{ X [tOI tl]

e Assume that we have constructed Fy on Ny x [to, t] for some k. Now, the lifting of Fy on Ny X [ty, ti1]
to one of the sheets of p~1(Uy) is determined by f |y, « {t,}» Which can be glued to the lifting on
Ny X [tp, tx] by the uniqueness of lifting again. This finishes the inductive step.

We obtain a lifting Fy of F on Nx x [ as required. O

Corollary 3.19. Let p : E — B be a covering. Then for any path <y : I — B and e € E such that p(e) = y(0), there
exists a unique path 7y : I — E which lifts v and 7(0) = e.

Proof. Apply HLP to X = pt.

O

Corollary 3.20. Let p : E — B be a covering. Then I1y(E) — I11(B) is a faithful functor. In particular, the induced
map 111(E, e) — 111(B, p(e)) is injective.

Proof. Lety;: I — E be two paths and [¥;] € Homyy, (g) (e, €2). Let 7; = p o ;. Suppose [71] = [72] and we

need to show that [§1] = [F2].
23



3 COVERING AND FIBRATION

Let F: 1 =~ 7 be a homotopy. Consider the following commutative diagram with the lifting F by HLP

Ix{0} "~ F

Ve
I><IF4>B

Then the uniqueness of lifting implies F |, (1= 72 Thus, F: 91~ 9. O

Transport functor

Let p: E — B be a covering. Let v : I — B be a path in B from b; to b,. It defines a map
Ty:p H(b1) = p ' (ba)
er — y(1)

where 4 is a lift of 4 with initial condition 4(0) = e;.

€o €1

FIGURE 12. The transportation

Assume [y1] = [72] in B. HLP implies that T,,, = T,,. We find a well-defined map:
T : Homyy, (5) (b1, b2) — Homget(p~" (b1), p ' (b2))
[v] = Ty
This leads to the following definition (check the functor property!).
Definition 3.21. The following data
T :11;(B) — Set
b—p'(b)
(Y] = Thyy-
define a functor, called the transport functor. In particular, we have a well-defined map
71 (B, b) = Autyy, ) (b) — Autset(p" (b))
Example 3.22. Consider the covering map
z R st
Consider the following path representing an element of 771 (S!)

Yu:I—=S, t— exp(nt) = ity e 7.
24



3 COVERING AND FIBRATION

Start with any point m € Z in the fiber, -y, lifts to a map to R}
Gu:1—RY, s m+nt.
We find Tj,, (m) = (1) = m + n. Therefore T}, | € Autset(Z) is
T[%] 2 —7Z, m— m-+n.

Proposition 3.23. Let p : E — B be a covering, E be path connected. Let e € E,b = p(e) € B. Then the action of
7t1(B, b) on p~1(b) is transitive, whose stabilizer at e is 7t1(E, e). In other words,

pl(b) = m(B,b)/mi(E,e)
as a coset space, i.e. we have the following short exact sequence
1— mi(E,e) — m(B,b) % p~l(b) — 1.
(7] = Ty(e)
Proof. For any pointe’ € p~1(b), let ¥: ¢ — ¢ be a pathin Eand 7 = po 4. Then ¢’ = 9,(y). This shows
the surjectivity of 0.

HLP implies that p, : 711 (E,e) — 711(B, b) is injective and we can view 711 (E, ¢) as a subgroup of 7r1 (B, b).
By definition, for 4 € 111 (E, ), we have 9, ([p o ¥]) = 7(1) = e, i.e. 11 (E,e) C Stab(711(B,b)). On the other
hand, if T, (e) = e, then the lift ¢ of y is a loop, i.e. 4 € 1 (E, e). Therefore, 7t1(E, e) D Stab,(7r1(B,b)). This
implies 711 (E, e) = Stab,(7r1(B, b)), which finishes the proof. O

Lifting Criterion

Theorem 3.24 (Lifting Criterion). Let p : E — B be a covering. Consider a continuous map f : X — B, where X
is path connected and locally path connected. Let eq € E, xo € X such that f(xg) = p(eo). Then there exists a lift F

of f with F(xg) = eq if and only if
fe(m (X, x0)) € ps(mi(E, e0)).

Proof. 1f such F exists, then

folm(X,x0)) = po(Fe(m(X,%0)) ) € pa(mi(Ese0)).
Conversely, let
E={(xe) e XXE|f(x)=ple)} C XXE

and consider the following commutative diagram

E—EE

=
=

X
f

The projection f is also a covering. We have an induced commutative diagram of functors
ITy (X) —— I11(B)
\ |
T
Set
25



3 COVERING AND FIBRATION

which induces natural group homomorphisms

(X, x0) 5 1 (B,by) — Aut(p (b)) = Aut(p(x0)), b= f(x0) = p(e).
Let &y = (xp,e9) € E. The condition f.(711(X,xp)) C p«(m1(E, ep)) says that 711(X, xq) stabilizes &. By
Proposition 3.23, this implies we have a group isomorphism
p«: m(E &) = m(X, xo).

Since X is locally path connected, E is also locally path connected. Then path connected components and
connected components of E coincide. Let X be the (path) connected component of E containing &y, then
m1(E, &) = (X, xp) implies that # : X — X is a covering with fiber a single point, hence a homeomor-
phism. Its inverse defines a continuous map X — E whose composition with E — E gives F.

- S FE
p lp
———> B.

f

mh

X

G-principal covering

Definition 3.25. Let G be a discrete group. A continuous action G x X — X is called properly discontinu-
ous if for any x € X, there exists an open neighborhood U of x such that

sU)NU=0, Vg#leG.
We define the orbit space X/G = X/ ~ where x ~ ¢(x) forany x € X, g € G.

Proposition 3.26. Assume G acts properly discontinuously on X, then the quotient map X — X /G is a covering.

Proof. For any x € X, let U be the neighbourhood satisfying ¢(U) NU = @,Vg # 1 € G. Then

pH(pU) = | gu
g€G

is a disjoint union of open sets. Thus, p is locally trivial with discrete fiber G, hence a covering. O

Definition 3.27. A left (right) G-principal covering is a covering p : E — B with a left (right) properly

P& .
N
B

such that the induced map E/G — B is a homeomorphism.

discontinuous G-action on E over B

E, VgegG

Example 3.28. exp: R! — S!is a Z-principal covering for the actionn : t — t +n,Vn € Z.
Example 3.29. S" — RP" = §"/Z; is a Z,-principal covering.
Proposition 3.30. Let p : E — B be a G-principal covering. Then the transport is G-equivariant, i.e.,

Tiyog =80Ty, Vg € G,yapathin B. .
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Proof. Lety: by — by and ey € p~'(bg). Then §: eg — ey = iy (ep) for some e; € p~1(by). If we apply the
transformation g to the path 4, we find another lift of 7y but with endpoints g(ep) and g(e1). Therefore

T1y(8(e0)) = gler).
It follows that T}, (g(eo)) = g(e1) = g(T},(eo))- This proves the proposition.

g(7)
g(eo) g(er)

€o €1

FIGURE 13. Transport commutes with G-action

O

Theorem 3.31. Let p : E — B be a G-principal covering, E path connected, e € E, b = p(e). Then we have an exact
sequence of groups

1— m(Ee) = m(B,b) > G — 1.

In other words, 111 (E, e) is a normal subgroup of 11 (B, b) and G = 111(B, b) /11 (E, e).

Proof. Let F = p~!(b). The previous proposition implies that 711 (B, b)-action and G-action on F commute.
It induces a 711 (B, b) x G-action on F. Consider its stabilizer at e and two projections

Stabe (771 (B, b) x G)
pry Pl

sl (B, b) G

pr, is an isomorphism and pr, is an epimorphism with ker(pr,) = Stab,(71(B,b)) = 11 (E, e). O

Apply this theorem to the covering exp: R! — S!, we find a group isomorphism

deg :| 1 (SY) 5z

which is called the degree map. An example of degree n map is

Sl s gl oty o0

Applications

Definition 3.32. Leti : A C X be an inclusion. A continuous map r : X — A is called a retraction if
roi=14. Itis called a deformation retraction if furthermore we have a homotopy ior ~ 1x rel A. We say
A is a (deformation) retract of X if such a (deformation) retraction exists.

Proposition 3.33. Ifi: A C X is a retract, then ry : 11 (A) — 111(X) is injective.
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3 COVERING AND FIBRATION

Corollary 3.34. Let D? be the unit disk in R?. Then its boundary S' is not a retract of D.

Proof. Since D? is contractible, we have 7r1(D?) = 1. But 711(S!) = Z. Then the corollary follows from the
proposition above. O

Theorem 3.35 (Brouwer fixed point Theorem). Let f : D> — D?. Then there exists x € D? such that f(x) = x.

Proof. Assume f has no fixed point. Let I, be the ray starting from f(x) pointing toward x. Then
D*—S', xw1,NaD?
is a retraction of 9D? = S! C D?. Contradiction. O

Theorem 3.36 (Fundamental Theorem of Algebra). Let f(x) = x" 4+ c1x" 1 + - - - + ¢, be a polynomial with
c; € C,n > 0. Then there exists a € C such that f(a) = 0.

Proof. Assume f has no root in C. Define a homotopy of maps from S to S!

Foslxlosl, R = Stan ;ZZ;’

n |f(tan(

On one hand, deg(F|g,,) = 0. On the other hand, deg(F|s1,;) = n. But they are homotopic hence

SRR

representing the same element in 771 (S1). Contradiction. O

Proposition 3.37 (Antipode). Let f: S' — S be an antipode-preserving map, i.e. f(—x) = f(—x). Then deg(f)
is odd. In particular, f is NOT null homotopic.

Proof. Leto: S' — S! be the antipode map, with o(x) = —x. Then deg(c) = —1. Let

F:R' 5 R!
F(x+1) = F(x) + deg(f),

be a lifting of f. Since f is antipode-preserving, F(x +1/2) = F(x) + mform € Z+1/2. So F(x +1) =
F(x) + 2m which implies deg(f) = 2m is odd. O

Theorem 3.38 (Borsuk-Ulam). Let f : S? — R?. Then there exists x € S? such that f(x) = f(—x).

Proof. Assume f(x) # f(—x),Vx € S%. Define

N 52 — Sl, X)) = M
¢ P = T = =)
Let D? be the upper hemi-sphere of S2. It defines a homotopy between constant map and p|,p2 : S! — S?,
hence deg(p|;p2) = 0. On the other hand, p|;p2 is antipode-preserving: p|yp2(—x) = —p|;p2(x), hence
deg(p|;p2) is odd. Contradiction. O

Corollary 3.39 (Ham Sandwich Theorem). Let A1, Ay be two bounded regions of positive areas in R2. Then there

exists a line which cuts each A; into half of equal areas.
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| P,

Proof. Let A;, Ay C R? x {1} C R>.

Given u € S?, let P, be the plane passing the origin and perpendicular to the unit vector u. Let A;(u) =
{p € Aj|p - u < 0}. Define the map

f:5* 5 R%  fi(u) = Area(A;(u)).

By Borsuk-Ulam, Ju such that f(u) = f(—u). The intersection R? x {1} N P, gives the required line since

fu) = () = fiw) = 3(A).
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4 CLASSIFICATION OF COVERING

4 CLASSIFICATION OF COVERING
Definition 4.1. The universal cover of B is a covering map p : E — B with E simply connected.

The universal cover is unique (if exists) up to homeomorphism. This follows from the lifting criterion
and the unique lifting property of covering maps. We left it as an exercise to readers.
Definition 4.2. A space is semi-locally simply connected if for any xg € X, there is a neighbourhood Uy
such that the image of the map i,.: 711 (Up, x9) — 711 (X, X¢) is trivial.

We recall the following theorem from point-set topology.

Theorem 4.3 (Existence of the universal cover). Assume B is path connected and locally path connected. Then
universal cover of B exists if and only if B is semi-locally simply connected.

Definition 4.4. We define the category Cov(B) of coverings of B where

e an object is a coveringmap p : E — B;
e a morphism between two coverings p; : Ey = Band pp : E; = Bisamap f : Ey — Ep such that
the following diagram is commutative

Eq —>
Definition 4.5. Let B be connected. We define Covy(B) C Cov(B) to be the subcategory whose objects

consist of coverings of B which are connected spaces.

Proposition 4.6. Let B be connected and locally path connected. Then any morphism in Covy(B) is a covering map.

Proof. Exercise. O
Definition 4.7. We define the category G -Set, where

e an object is a set S with G-action and
e morphisms are G-equivariant set maps, i.e. f: S; — Sy such that fog=go f,forany g € G.

Given a covering p : E — B, b € B, the transport functor implies that
p~'(b) € m1(B,b)-Set.

Lemma 4.8. Let B be path connected. Then 7ty (B, b) acts transitively on p~'(b) if and only if E is path connected.

Proof. The "if” part follows from Proposition 3.23. We prove the “only if” part.

Let us fix a point ey € p~!(b). Assume 711 (B, b) acts transitively on p~!(b). This implies that any point
in p~1(b) is connected to ey by a path. Given any point e € E, let oy be a path in B that connects p(e) to b.
The transport functor T}, gives a path connecting e to some point in p~1(b). This further implies that e is
path connected to ey. This proves the “only if” part.

O

Corollary 4.9. Let B be path connected, p : E — B be a covering. Then there is a one-to-one correspondence between

path connected components of E and 7t (B, b)-orbits in p~1(b).
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4 CLASSIFICATION OF COVERING

FIGURE 14. Transitivity v.s. path connectedness

Example 4.10. Let p : B — B be the universal covering. By Proposition 3.23, the fiber p~!(b) can be
identified with 711 (B, b) itself.

Proposition 4.11. Assume B is path connected and locally path connected. Let py, p» € Cov(B). Then

Homco(p) (p1, p2) = Homyy (5.4 set(p1 ' (b), p; ' (D))
forany b € B.

Proof. Let f € Home,y(p) (1, p2), ie
ELNTES S
It induces a map by restricting f to the fiber p~1(b)
for P (0) = py (D).
By the same argument as in Proposition 3.30, we find f; is 711 (B, b)-equivariant. Thus we obtain a map
®: Homeoy(g) (1, p2) = Homy (55)-set(p7 ' (b), p3 ' (b))
f= 1

The injectivity of @ comes from the uniqueness of the lifting.

To prove surjectivity, we can assume E; is path connected, and 711 (B, b) acts transitively on p;’ L(b) (see
the Corollary above). Given f,: p;*(b) — p, ' (b), let us fix two points ¢; € p; ' (b) such that f(e;) = e,
The 711 (B, b)-equivariance of f;, gives rise to the homomorphism

Stab,, (711(B,b)) — Stab,,(711(B,b))
= m(Eyer) = m1(Ep, €2).

By Lifting Criterion (Theorem 3.24), we obtain a morphism f: E; — E, as required. O

Theorem 4.12. Assume B is path connected, locally path connected and semi-locally simply connected. b € B. Then
there exists an equivalence of categories

‘Cov(B) ~ nl(B,b)—&.‘
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4 CLASSIFICATION OF COVERING

Proof. Let us denote 711 = 711 (B, b). Let f : B — B be a fixed universal cover of Band b € 7~ (b) chosen.

We will define the following functors

Let p : E — B be a covering, we define
F(p) :=p~'(b).
Let S € 711 -Set, we define
G(S):=Bxx S=BxS/~,

where (e-g,5) ~ (¢,g-s) forany e € B,s € S,g € 1. Note that here ¢ - ¢ represents the (right) 7r;-action
on B. Then we have natural isomorphisms

FoGZ1, GoFZ1.
Here 7 is the natural isomorphism
ns € Homy, set(Fo G(S),S), ns(e,s)=g-s ife=0b-g.
T is the natural isomorphism
Ty € Homggy() (P, p) = Homy, set(p~ ' (b), p~ (b)), p' =GoF(p):Bxn p ' (b) = B,
which is determined by the identity map in Hom, .set(p 1 (b), p~1(b)). O

Definition 4.13. Let B be path connected and p : E — B be a connected covering. A deck transformation
(or covering transformation) of p is a homeomorphism f : E — E such that po f = p.

Let Aut(p) denote the group of deck transformations.

Note that Aut(p) acts freely on E by the Uniqueness of Lifting.
Proposition 4.14. Let B be path connected and p : E — B be a connected covering. Then Aut(p) acts properly
discontinuously on E.
Proof. Exercise. O

Corollary 4.15. Assume B is path connected, locally path connected. Let p : E — B be a connected covering,
ec€ E,b=p(e) € B,G=m(B,b),H = m1(E,e). Then

Aut(p) = Ng(H)/H

where
Ng(H): ={re G |rHr ! = H}

is the normalizer of H in G.
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5 CLASSIFICATION OF COVERING

Proof. By the above proposition,
Aut(p) = Homg set(G/H,G/H) = Ng(H)/H.

Definition 4.16. We define the orbit category Orb(G):
e objects consist of (left) coset G/ H, where H is a subgroup of G;
e morphisms are G-equivariant maps: G/H; — G/ Ha.
Note G/H;j and G/ H; are isomorphic in Orb(G) if and only if H; and H; are conjugate subgroups of G.
If we restrict Theorem 4.12 to connected coverings, we find

Theorem 4.17. Assume B is path connected, locally path connected and semi-locally simply connected. b € B. Then
there exists an equivalence of categories

Covy(B) =~ Orb(m; (B, b)).

The universal cover B — B corresponds to the orbit 7t (B, b). For the orbit 771 (B, b) / H, it corresponds to
E=B/H - B.

This can be illustrated by the following correspondence

1(B,b) ———— > m(B,b)/H — B/H

N \/

A more intrinsic formulation is as follows. Given a covering p : E — B, we obtain a transport functor

Tp : ITy(B) — Set.
Given a commutative diagram

E]%—Ez

we find a natural transformation

T: Ty, =Ty, T={f:p; (b) = p;'(b)|b € B}

The above structure can be summarized by a functor

| T: Cov(B) — Fun(Ily(B), Set) |

Theorem 4.18. Assume B is path connected, locally path connected and semi-locally simply connected. Then
T : Cov(B) — Fun(I1;(B), Set)

is an equivalence of categories.
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5 LIMIT AND COLIMIT

Many constructions in algebraic topology are described by their universal properties. There are two
important ways to define new objects of such types, called the limit and colimit, which are dual to each
other. In this section, we give a brief discussion of these two notions.

Let 7 be a small category (i.e. objects form a set). Let C be a category. Recall that we have a functor
category (Definition 1.27)
Fun(Z,C),
where objects are functors from Z to C, and morphisms are natural transformations. We also write
¢t = Fun(Z,0).
Definition 5.1. We define the diagonal (or constant) functor
A:C — Fun(Z,C),

which assigns X € C to the functor A(X) : Z — C that sends all objects in 7 to X and all morphisms to 1x.

Diagram
Let 7 be a diagram, with vertices and arrows. We can define a category still denoted by 7
e Obj(Z) = vertices in the diagram 7

e morphisms are composites of all given arrows as well as additional “identity arrows” that compose
like identity maps.

Example 5.2. The following diagram
e — o

|

*
defines a category with three objects o, 0, x. There is only one morphism from e to o, one from o to x, and
one from e to x which is the composite of the previous two.

Given an object A € C, the constant functor A(A) : Z — C can be represented by the following data

A4 A
b
A

Example 5.3. The following diagram

e — O
*
defines a category with three objects e, o, x. There is only one morphism from e to o and one from o to x.

There are two morphisms from e to %, one of them is the composite of the previous two morphisms, and
the other one is represented by the arrow e — .

Example 5.4. The following diagram

—
[ ] L [¢]

defines a category with two objects ®, 0. Morphisms from e to  contains the identity 1., the composition of

e — oand o — e and so on.
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5 LIMIT AND COLIMIT

Given a diagram 7, a functor F : 7 — C is determined by assigning vertices and arrows the correspond-
ing objects and morphisms in C. For example, the following data

x-JT.ovyed 7 xvzec

define a functor from @ — o < x to C. Such a data will be also called a Z-shaped diagram in C.

Limit

Definition 5.5 (Limit). Let F : Z — C. A limit for F is an object P in C together with a natural transformation
T:A(P)=F

such that for every object Q of C and every natural transformation 17 : A(Q) = F, there exists a unique map
f:Q — Psuch that T o A(f) = 5. In other words, the following diagram is commutative.

For example, consider the following Z-shaped diagram in C which represents a functor F : Z — C

Y
l.
X — 7

Then its limit is an object P € C that fits into the commutative diagram

P——Y

142l

X — 7

Moreover for any other object Q fitting into the same commutative diagram, there exists a unique f : Q — A
to making the following diagram commutative

Il

Proposition 5.6. Let F : T — C and Py, P, be two limits of F with natural transformations 7; : A(A;) = F. Then
there exists a unique isomorphism Py — P, in C which makes the following diagram commutative

\/

The above proposition says that if the limit of F exists, then it is unique up to a canonical isomorphism.

Definition 5.7. We denote the limit of F : Z — C by lim F (if exists).
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5 LIMIT AND COLIMIT

The universal property of the limit gives the adjunction
Homgyn(z,c)(A(X), F) = Home (X, lim F).
This immediately leads to the following theorem.
Theorem 5.8. Let C be a category. Then the following are equivalent

(1) Every F : T — C has a limit
(2) The constant functor A : C — Fun(Z, C) has a right adjoint.

A:C — Fun(Z,C) : lim .
In this case, the right adjoint of the constant functor is the limit.
Example 5.9 (Pullback). The limit of the following diagram X — Y <— Z gives

P——Y

-

X — Z
f

which is called the pullback.

In the category Set, the pull-back exists and is given by the subset of X x Y
P={(xy) € XxY|f(x) =g(y)} C X xY.
Example 5.10 (Tower and inverse limit). We consider the following category IN:

o Objects of IN are positive integers.
e Given m,n € N, the morphism set Homp; (11, n) is empty if m > n and is a single point if m < n.

Let IN°P be the opposite of IN. A functor F : IN°P — C is represented by the tower diagram

— Xy Xn X3 Xy .

The limit of tower diagram is also called the inverse limit of the tower and written as lim X;.

Bl

~*>an/ )}n\\x Xl.

2

Theorem 5.11. Let L:C —— D : R beadjoint functors. Assume the limit of F : T — D exists. Then the limit
of RoF : 1 — C also exists and is given by

lim(RoF) = R(lim F).

In other words, right adjoint functors preserve limit.

Proof. Let A € C. Assume we have a natural transformation
T:A(A) = RoF.

By adjunction, this is equivalent to a natural transformation A(L(A)) = F.
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By the universal property of limit, there exists a unique map L(A) — lim F factorizing A(L(A)) = F

A(L(A)) = limF = F.

By adjunction again, this is equivalent to natural transformations
A(A) = R(limF) = RoF.
This implies that R(lim F) is the limit of Ro F. O

Remark 5.12. A functor is called continuous if it preserves all limits. This theorem says if a functor has a left
adjoint, then it is continuous. Under certain conditions, the reverse is also true (Adjoint Functor Theorem).

Corollary 5.13. The forgetful functor Forget : Top — Set preserves limit.

Proof. Forget: Top — Set has a left adjoint
Discrete : Set . Top : Forget ,
where Discrete associates a set X with discrete topology. O
Example 5.14. Consider the following diagram in m
Y
X — £

We would like to understand the pull-back P of the above diagram in Top. By Example 5.9 and Corollary
5.13, we know that the underlying set for P (if exists) is

Forget(P) = {(x,y) € X xY|f(x) =g(y)} C X x Y.

It is not hard to see that if we assign P the subspace topology of the topological product X x Y, then P is
indeed the pull-back in Top. In particular, pull-back exists in Top. Fibrations behave well under pull-back.

Proposition 5.15. Let p : Y — Z be a fibration, and f : X — Z be continuous. Consider the pull-back diagram

Q=

Y
L
XTZ

Then q : Q — X is also a fibration. In other words, the pull-back of a fibration is a fibration.

Colimit
The notion of colimit is dual to limit.
Definition 5.16 (Colimit). Let F : Z — C. A colimit for F is an object P in C together with a natural

transformation

7:F = A(P)
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5 LIMIT AND COLIMIT

such that for every object Q of C and every natural transformation 77 : F = A(Q), there exists a unique map
f: P — Qsuch that A(f) o T = 5. In other words, the following diagram is commutative

F == A(P)
n iiH!A(f) :
A(Q)

The colimit, if exists, is unique up to a unique isomorphism, and will be denoted by colim F.

The following theorems are dual to the limit case as well and can be proved dually.
Theorem 5.17. Let C be a category. Then the following are equivalent

(1) Every F : T — C has a limit
(2) The constant functor A : C — Fun(Z,C) has a left adjoint.

colim: Fun(Z,C) —/—— C: A
In this case, the left adjoint of the constant functor is the colimit.

Theorem 5.18. Let L:C —— D:R be adjoint functors. Assume the colimit of F : T — C exists. Then the
colimit of Lo F : T — D also exists and is given by

colim(L o F) = L(colim F).
In other words, left adjoint functors preserve colimit.

Remark 5.19. A functor is called co-continuous if it preserves all colimits. This theorem says if a functor has
a right adjoint, then it is co-continuous. Under certain conditions, the reverse is also true (Adjoint Functor
Theorem).

Corollary 5.20. The forgetful functor Forget : Top — Set preserves colimit.

Proof. Forget : Top — Set has a right adjoint
Forget : Top —— Set: Triv ,
where Triv associates a set X with trivial topology (only open subsets are @ and X). O

Example 5.21 (Pushout). The colimit of the following diagram X < Y — Z gives

Y —— Z

I

X —— P

This colimit is called the pushout. This is a dual notion to pullback. It has the following universal property

Y —— Z

Here are some examples.
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5 LIMIT AND COLIMIT

e Letji: Xo = Xi,j2 : Xo — Xz in Top. Their pushout is the quotient of the disjoint union X; ][ X»
by identifying j1(y) ~ j2(y),y € Xo. It glues X1, X, along X using jy, j». For instance:

X

e Letp; : H— Gy, p2: H— Gz be two morphisms in Group, then their pushout is
(G1*Gp)/N,
where Gj * G; is the free product and N is the normal subgroup generated by p1 (h)p5 ' (h),h € H.
Example 5.22 (Telescope and direct limit). A functor F : IN — C is represented by the telescope diagram

X1 Xz Xu Xn+14>"'~

The colimit of telescope diagram is also called the direct limit of the telescope and written as hﬂ X;.

X4 X, X, Xpp1 — - -
Q

Product

Definition 5.23. Let C be a category, { Aq }.c1 be a set of objects in C. Their product is an object A in C
together with 71, : A — A, satisfying the following universal property: for any X in C and f; : X — A,
there exists a unique morphism f : X — A such that the following diagram commutes

3!
X - ff>A

N

Ax

For product of two objects, we have the following diagram

A><A2

AN
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5 LIMIT AND COLIMIT

The product is a limit. In fact, let us equip the index set I with the category structure such that it has only
identity morphisms. Then the data { A} is the same as a functor F : I — C. Their product is precisely
lim F. In particular, the product is unique up to isomorphism if it exists. We denote it by

I A

wel

A useful consequence is that the product is preserved under right adjoint functors (like forgetful functors).
Example 5.24.

o Let S, € Set. [TSx = {(sa)|5a € Sa} is the Cartesian product.
o
o Let X, € Top. Then ] X, is the Cartesian product with induced product topology. Namely, we
- o

have X % I'T X4 is continuous if and only if {X I X, } are continuous for any a.

o
o Let G4 € Group. Then [] G, is the Cartesian product with induced group structure, i.e.
- o

[1Gx = {(8x) | 82 € Ga}
with (ga) - (84) = (8a - &)-

Coproduct

Definition 5.25. Let C be a category, { Ay }acr be a set of objects in C. Their coproduct is an object A in C
together with i, : Ay — A satisfying the following universal property: for any X in C and f, : Ay — X,
there exists a unique morphism f : A — X such that the following diagram commutes

3!

X < fff A
\ T"“
fa

Ay

The coproduct is a colimit. As in the discussion of product, the data { A, } 4e; defines a functor F : [ — C.
Their coproduct is precisely colim F, which is unique up to isomorphism if it exists. We denote it by

1] A
wel

A useful consequence is that the coproduct is preserved under left adjoint functors (like free constructions).

Example 5.26.

o LetS, € Set. [1Sx = {(sa)|sa € Sa} is the disjoint union of sets.

o
o Let X, € Top. Then ][] X, is the disjoint union of topological spaces. Clearly, continuous maps
- 14

{Xa Iy Y} uniquely extends to [T X, — Y.
24
o Let G4 € Group. Then ]| G, is the free product of groups. More precisely, we have
- 24

L[G“: = {word of finite length: x1xp - - - x, | x; € Gy, }/ ~,
14
where

X1 XX X~ Xy (X X)X
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5 LIMIT AND COLIMIT

if x;,x;11 € Gy and (x; - x;,1) is the group production in G,. The group structure in [ [ G, is
14

(xl...xn).(yl...ym): :xl...xnyl...ym'
Given group homomorphisms G, f—a> H, it uniquely determines the group homomorphism
f: H Gy — H
o
Xg oo Xn = fog (%1) - fa, (X0)-
This is precisely the coproduct property. When there are only finitely many G,, we will write

[JGu=:Gi*Gox---xGy.
o

Wedge and smash product

Definition 5.27. We define the category Top, of pointed topological space where

e an object (X, xp) is a topological space X with a based point xy € X

e morphisms are based continuous maps that map based point to based point.

Given a space X, we can define a pointed space X by adding an extra point
Xy =X]]* withbasepoint .
This defines a functor
()+ : Top — Top, .
On the other hand, we have a forgetful functor by forgetting the base point
Forget : Top, — Top.
They form an adjoint pair
()+ : Top = Top, : Forget

This implies that the limit in Top, will be the same as the limit in Top. In particular, the product of pointed

spaces {(Xj, x;)} in Top, is the topological product
[IX:, withbase point {x;}.
i

In Top,, the coproduct of two pointed spaces X, Y is the wedge product V. Specifically,
XVY=X[]Y/~

is the quotient of the disjoint union of X and Y by identifying the base points xg € X and yo € Y. The
identified based point is the new based point of X VV Y. In general, we have

VX =11Xi/ ~

iel iel

where ~ again identifies all based points in X;’s. In other words, \/ is the joining of spaces at a single point.

vi{ )= (0

Example 5.28. The Figure-8 in Example 3.9 can be identified with S' v S1.
41



5 LIMIT AND COLIMIT

In Top,, there is another operation, called smash product A, which will have adjunction property and

play an important role in homotopy theory. Specifically,
XANY=XxY/~

is the quotient of the product space X x Y under the identifications (x, o) ~ (xo,y) forallx € X,y € Y.
The identified point is the new based point of X A Y. Note that we can write it as the quotient

XAY=XxY/XVY.

FIGURE 15. Smash product of circles

Example 5.29. There is a natural homeomorphism
SN =B

This implies that $” A §™ =2 §"*™_ For instance, see Figure 15 for n = 1 case. In this case, the result, i.e.
S2, can be also realized by cutting the green/purple circles on the torus (where we get a square) and gluing
them (the boundary of the square) into one point.

Complete and cocomplete

Definition 5.30. A category C is called complete (cocomplete) if for any F € Fun(Z,C) with Z a small
category, the limit lim F (colim F) exists.

Example 5.31. Set, Group, Ab, Vect, Top are complete and cocomplete.

For example, in Set, the limit of F : [ — Set is given by

limF = { (xi)ier € [ [ F()

i€l

xj = F(f)(x;) for any i i)]} c [TFG)

i€l

which is a subset of [T F(i). The colimit is given by
iel

colimF = ]_[F(z)/ {xi ~ F(f)(x;) for any i Lj, X; € F(i)}

iel
which is a quotient of [ [;c; F(i).
For another example, we consider Top. Since the forgetful functor Top — Set has both a left adjoint
and a right adjoint, it preserves both limits and colimits. Given F : I — Top, its limit lim F has the same

underlying set as that in Set above, but equipped with the induced topology from product and subspace.

Similarly, the colimit colim F is the quotient of disjoint unions of F(i) with the induced quotient topology.
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Initial and terminal object

Definition 5.32. An initial/universal object of a category C is an object x such that for every object X in C,
there exists precisely one morphism x — X. Dually, a terminal/final object x satisfies that for every object
X there exists precisely one morphism X — x. If an object is both initial and terminal, it is called a zero
object or null object.

The defining universal property implies that the initial object and he terminal object are unique up to
isomorphism if they exist.

Example 5.33. The emptyset @ is the initial object in Set, and the set with a single point is the terminal
object in Set. The same is true for Top.

The limit of a functor F : I — C can be viewed as a terminal object as follows. We define a category Cr

e an object of Cr is an object A € C together with a natural transformation
A(A)=F

e a morphism in Cr is a morphism f : A — B in C such that the following diagram is commutative

AA) —=2D APy
\ F /

Then lim F is the terminal object in Cr. A dual construction says colim F can be viewed as an initial object.
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6 SEIFERT-VAN KAMPEN THEOREM

Theorem 6.1 (Seifert-van Kampen Theorem, Groupoid version). Let X = U UV where U,V C X are open.
Then the following diagram

I(UNV) — II(U)

is a pushout in the category Groupoid.

Proof. Let C be a groupoid fitting into the commutative diagram

I(UNV) — I1(U)

and we need to show that

Uniqueness: Let y: I — X be a path in X with x; = (t). We subdivide I (by its compactness) into
O=ty<h < <tm=1
such that 7y; := 7y(t;_1, t;) lies entirely in U or V. Then

F([v]) = F(lym]) -+ - F([n])

is determined uniquely in C as each term is.

Existence: Given a path v, we can define F([y]) using a subdivision of I (or ), where the result does
not depend on the choice of the subdivision. We need to show that this is well-defined on homotopy
class. This follows from a refined double subdivision of I x I, as shown in the picture below. Each
square represents a homotopy lying entirely in either U or V and combining them together gives
the required homotopy.

F(m) = F(71 xixy) = F(ix; x 72) = F(72)
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6 SEIFERT-VAN KAMPEN THEOREM

T

T2

Theorem 6.2 (Seifert-van Kampen Theorem, Group version). Let X = UU V where U,V C X are open and

U, V,UNYV are path connected. Let xo € U N V. Then the following diagram

m(UNV,xy) — m (U, xg)

i i

m1(V, xo) 1 (X, xo)

is a pushout in the category Group.

Proof. Denote by G the groupoid with one object that comes from a group G.

For each x € X, we fix a choice of [yy] € Hom(xo, x) such that 7, lies entirely in U when x € U and 7,
lies entirely in V when x € V. Note this implies that -y, lies entirely in U NV when x € U N V. Such choice

can be achieved because U, V, U N V are all path connected. Consider the following functors
Iy (U) = m (U, x0)
(V) = m(V,x)
IHUNV) = mUNV,xg)
Y = Yy kY *qy, v € Hom(xy, xp).
These functors are all retracts in Groupoid, in other words, the compositions
m (U, x0) = I (U) — 1 (U, xo)
m(V,xo) = (V) = m(V, x)
mUNV,x) =>TLHUNV) = 7 (UNV,xq)
are all identity functors.

Suppose there is a group G that fits into the following commutative diagram:

I (U) IUNV) —=TI;(V)

m (U, x) =<— mUNV,xy) —— m(V, xp)

(o)
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6 SEIFERT-VAN KAMPEN THEOREM

By Theorem 6.1, we have the following morphism F

I (U) ILUunv) I (V)
(U, xo) Ty (X) m(V, x0)

Thus, we obtain a morphism

which fits into a commutative diagram

7'(1(11 nyv, XO)

nl(U, Xo)

m(V, %) ——> m(X,\

Since Group is a full subcategory of Groupoid, the theorem follows. O

G

We also have the relative version.

Definition 6.3. Let A C X, we define IT; (X, A) be the full subcategory of IT; (X) consists of objects in A.

Hl(X/ xO) = 7-[1 (X/ XO)-

For instance, when A = {xy}, we have

Theorem 6.4. Let X = UUV, U,V beopen and A C X intersects each path connected components of U, V,UNV.
Then we have a pushout

L (UNV,A) — IT; (U, A)

l |

IL(V,A) IL (X, A).
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6 SEIFERT-VAN KAMPEN THEOREM

Example 6.5. For the Figure-8 in Example 3.9, which is S' v S'.

It can be decomposed into U, V as follows

ISR

Since U, V are homotopic to S!, and U NV is homotopic to a point, Seifert-van Kampen Theorem implies
(St Sh) =m(SY)«m(SY) =Z+Z.

In general, we have

Example 6.6. Consider the 2-sphere $%2 = Dy U D, where D; 2 D? are open disks and Dy = D1 N D5 is an
annulus. Here D; is an open neighbourhood of X; fori =0, 1, 2.

Since 711(D1) = (D) = 1,11 (Dy) = = Z,we deduce that
nl(Sz) =(1*x1)/Z=1.

Similar argument shows that
m((s") =1, n>2.

Example 6.7. Let us identiy X = S! with the unit circle in R?. Consider
U={(x,y) €S |y>-1/2}, V={(x,y) €S |y<1/2}
and A = {(£1,0)}. Then we obtain a pushout by Theorem 6.4
Hl(Uﬂ V,A) e Hl(U,A)
I (V,A) —II; (S, A).

This implies that the groupoid IT;(S?, A) contains two objects a; = (1,0),a, = (—1,0) with morphisms

Homyy (g1 4 (a1,81) = {(r=7+)"}nez

Homyy, 1 A)(alraZ) {(r+7=)"r+}nez

Homm sLA az,a1) = {(v=7+)"v-}nez
) ={(r+7-)"}nez

)(
Homn (51 A) (le, ap
)

Here 7.4 represents the semi-circle from (1,0) to (—1,0) anti-clockwise, and 7_ represents the semi-circle

from (—1,0) to (1,0) anti-clockwise.
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6 SEIFERT-VAN KAMPEN THEOREM

Example 6.8. Consider the closed orientable surface X of genus g, which admits a polygon presentation
P= alblal_lbl_l . .agbgaglbgl.

Here is a figure for g = 2.

The edges of the polygon form V;, = \/lzi 1 Sl. Let U be the interior of the polygon and V be a small open
neighbourhood of V. Then U NV is an annulus, which is homotopic to S; with generator P as above.
Thus

28
m(Ze) = (HZ) *0/Z = {a;,b; |i=1,...,8)/ (a1b1af1bfl . -agbgaglbgl) .
i=1
Example 6.9. Using the polygon presentation P = a?, we can similarly compute 71 (RIP?) = Z /2Z

The Jordan Curve Theorem

We give an application of Seifert-van Kampen Theorem to prove the Jordan Curve Theorem. This is an
example which sounds totally obvious intuitively, but turns out to be very difficult to prove rigorously.

Definition 6.10. A simple closed curve is a subset of R? (or §?) which is homeomorphic to the circle S 1

Theorem 6.11 (The Jordan Curve Theorem). Let C be a simple closed curve in the sphere S?. Then the complement
of C has exactly two connected components.

Proof. We sketch a proof here. Since S? is locally path connected, we would not distinguish connected and
path connected here. By an arc, we mean a subset of 5> which is homeomorphic to the interval I.

We first show that:
if A is an arc in S?, then S?\ A is connected.
In fact, assume that there are two points {a,b} which are disconnected in S*\ A. Let us subdivide A =
Aj U A into two intervals where A} = [0,1/2], A, = [1/2,1] using the homeomorphism A = [0,1]. We
argue that a, b are disconnected in either S?\ A1 or S?\ A,. Let us choose a set D which contains one point
from each connected component of S?\ A and such that {a,b} C D. Apply Seifert-van Kampen Theorem to
Vi = S?\ Ay, V, = S2\ Ay, V; NV, = S?\ A, we obtain a pushout in Groupoid

Hl(Vl N Vz, D) _— Hl(VZ,D)

| l

I1,(V1, D) I,(Y,D).

Here Y = Vj U V5 is the complement of a point in S2. If {a,b} are connected in both V; and V5, then the
pushout implies that there exists a nontrivial morphism via the composition

in V; in ViNV; in V;
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But this can not true since Y is contractible. So let us assume a, b are disconnected in V; = SZ\Al. Run
the above process replacing A by A;, and keep doing this, we end up with contradiction in the limit. This
proves our claim above for the arc.

Secondly, we show that:
the complement of C in S? is disconnected.

Otherwise, assume that S?\C is connected. Let us divide C = A; U A, into two intervals A, A, which
intersect at two endpoints {a,b}. Let U; = S?\Ay, Uy, = S>\Ap,U1NUy = S?\Cand X = U Ul =
52\{a, b}. Since Uy, Up, Uy N U, are all connected, Seifert-van Kampen Theorem leads to a pushout in
Group

1 (Uy N Up) —— my(Up)

l l

1 (L) 1 (X).
Observe 111 (X) = Z. We show both 711 (U;) — 711(X) are trivial. This would lead to a contradiction.

Let us identify S? = R? U {0} and assume a = 0,b = o9, so A; is parametrized by a path & from 0 to co.
Let 7y be an arbitrary loop in U, we need to show 7y becomes trivial in X. Let R > 0 be sufficient large such
that -y is contained in the ball of radius R centered at the origin in R?. Consider the homotopy

E(ts) = 7(H) = als), s = F(—,9).

We have 7o = 7. Assume that a(fg) > R, then 7y, lies inside the ball of radius R centered at a(tp), which is
contractible in X. This implies that v is trivial in X. The same argument applies to Aj.

Finally, we show that:
the complement of C in S has exactly two connected components.

Let C = A; U Ay and Uy, U, as in the previous step. Let D be a set which contains exactly one point from
each connected component of $?\C. We have a pushout in Groupoid

Hl(ul N Uy, D) —_— Hl(UZI D)

l l

I, (U4, D) I (X, D).

Suppose that D contains at least three points, say c,d,e. Since Uj, Uy are connected, and points in D are
disconnected in U; N Uy, the following two compositions

in U2 in Ul in ulﬂUZ in U2
— ———e———=e—>c

inlU;  inUNU
c—bhd—"A2 c and ¢

give two free generators in 711 (X, ¢). But 711 (X, ¢) = Z, contradiction. g
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7 A CONVENIENT CATEGORY OF SPACES

In homotopy theory, it would be convenient to work with a category of spaces which has all limits, col-
imits, and enjoys nice properties about mapping space (especially the Exponential Law). The full category
Top does not work since the Exponential Law fails. The subcategory of locally compact Hausdorff spaces
has the Exponential Law, but does not preserve limits and colimits in general. It turns out that there is some
complete and cocomplete category that sits in between locally compact Hausdorff spaces and all topological
spaces, and enjoys the Exponential Law. Compactly generated weak Hausdorff spaces give such a category
CGWH, which we briefly discuss in this section. This will be a convenient category for homotopy theory.

Compactly generated space

Definition 7.1. A subset Y C X is called “compactly closed” (or “k-closed”) if f~!(Y) is closed in K for
every continuous map f : K — X with K compact Hausdorff. We define a new topology on X, denoted by
kX, where close subsets of kX are compactly closed subsets of X. The identity

kX — X
is a continuous map. X is called compactly generated if kX = X.
Let CG denote the full subcategory of Top consisting of compactly generated spaces.
If a space X is compactly generated, then for any Y, a map f : X — Y is continuous if and only if the
composition K — X — Y is continuous for any continuous K — X with K compact Hausdorff. Note
KX = kX.

Proposition 7.2. Every locally compact Hausdorff space is compactly generated.

Proof. Let X be locally compact Hausdorff, and Z be a k-closed subset. We need to show Z = Z is closed.

Let x € Z. Since X is locally compact Hausdorff, x has a neighborhood U with K = U compact Haus-
dorff. Then x € KN Z. Since Z is k-closed, K N Z is closed in K, hence closed in X. So x € Z. O

Proposition 7.3. The assignment X — kX defines a functor Top — CG, which is right adjoint to the embedding
i: CG C Top. In other words, we have an adjoint pair

i:CG —— Top:k

Proof. Let X € CG,Y € Top, we need to show that f : X — Y is continuous if and only if the same map
f + X — kY is continuous. Assume f : X — kY is continuous. Then the composition X — kY — Y is

continuous. Conversely, assume f : X — Y is continuous. Let Z C Y be a k-closed subset. Then for any
g : K — X with K compact Hausdorff,

8§ (fHZ) = (fo)(2)
is closed in K. It follows that f~1(Z) is k-closed in X, hence closed. So f : X — kY is continuous. O

Proposition 7.4. Let X € CGand p : X — Y be a quotient map. Then'Y € CG.

Proof. By Proposition 7.3, p factor through X — kY. Since the quotient topology is the finest topology
making the quotient map continuous, we find Y = kY. O

Theorem 7.5. The category CG is complete and cocomplete. Colimits in CG inherit the colimits in Top. The limits
in CG are obtained by applying k to the limits in Top.
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Proof. Let F € Fun(I,CG) and F =i o F € Fun(I, Top) where i : CG — Top is the embedding.

The left adjoint functor i : CG — Top preserves colimits. Since F(i) € CG, their coproduct [ [;c; F(7)
in Top (given by the disjoint union) is in CG. Since colim F is a quotient of [ J;c; F(i), it also lies in CG by
Proposition 7.4. This implies the statement about colim F.

The right adjoint functor k : Top — CG preserves limits. Therefore

limF = lim(ko F) = klim F.

Corollary 7.6. Let {X;};c] be a family of objects in CG. Then their product in CG is
k[ X
il

where ] X; is the topological product of X;'s.
icl

Definition 7.7.

;o
We will use x, H to denote the product in CG and X, H to denote the product in Top.

Proposition 7.8. Assume X is compactly generated and Y is locally compact Hausdorff, then X x Y = X >t< Y.

Definition 7.9. Let X,Y € CG. We define the compactly generated topology on Hom@(X, Y) by
Map(X,Y) =kC(X,Y) € CG.

Here C(X,Y) is the compact-open topology generated by

{f € HomTep(X,Y)[f(g(K)) C U}, where g : K — X with K compact Hausdorff and U C Y is open.

Note that the compact-open topology we use here for CG is slightly different from the usual one: we ask
for a map from K which is compact Hausdorff. We will also use the exponential notation

YX .= Map(X,Y).
Lemma 7.10. Let X,Y € CG, K compact Hausdorff, and f : K — X continuous. Then the evaluation map
t
evg :Map(X,Y) x K=Y, (gk)— g(f(k))

is continuous. In particular, Map(X,Y)xK — Y is continuous.

Proof. Let U C Y be open, and (g,k) € evi!(U). Then go f~1(U) is open in K and contains k. Since K is
compact Hausdorff, k has a neighborhood V such that V C go f~!(U). Then

{hn(f(V)) cu} xVv

is an open neighborhood of (g, k).

Proposition 7.11. Let X,Y € CG. Then the evaluation map Map(X,Y) x X — Y is continuous.
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Proof. Let K be compact Hausdorff, and a continuous map K — Map(X,Y) x X. We need to show the
composition K — Map(X,Y) x X — Y is continuous. But this is the same as the composition

K — Map(X,Y)xK—=Y

which is continuous by the previous lemma. O

Proposition 7.12. Let X,Y,Z € CGand f : X x Y — Z continous. Then the induced map
f:X —=Map(Y,Z), {x— f(x,—)|x€ X}
is also continuous.
Proof. We need to show f : X — C(Y, Z) is continuous. Let & : K — Y be a continuous map with K compact
Hausdorff, and U C Z open. Let
W={g:Y — Z|g(h(K)) C U}.

Letx € f~1(W),ie., f(x,h(K)) C U. Since f is continuous and K is compact, there exists an open neigh-
borhood V of x such that f(V,h(K)) C U. Then V C f~1(W) as required. O

Theorem 7.13 (Exponential Law). Let X,Y,Z € CG. Then the natural map
Map(X x Y,Z) — Map(X,Map(Y,Z)), f—{x— f(x,—)|x € X}
is a homeomorphism.

Proof. We first show that
Homop (X x Y, Z) — Homrpep (X, Map(Y, Z))

is a set isomorphism. Note that this map is well-defined by Proposition 7.12, which is obviously injective.

For any continuous g : X — Map(Y, Z), we obtain

FoXx Y Map(Y,Z2) x Y - Z

which is continuous. This proves the surjectivity and we have established the set isomorphism.

The fact on homeomorphism is a formal consequence. In fact, for any W € CG, we have

Homop (W, Map(X x Y, Z)) = Hompep(W x X X Y, Z)
- = Homg(w x X,Map(Y,Z))
= Homop (W, Map(X, Map(Y, Z))).
This says that we have a natural isomorphism between the two functors
Homrop (—, Map(X x Y, Z)) = Homoep (—, Map(X,Map(Y, Z))) : CG — Set.

Then Yoneda Lemma gives rise to the homeomorphism

Map(X x Y, Z) = Map(X,Map(Y, Z)).

Proposition 7.14. Let X,Y,Z € CG. Then the composition
Map(X,Y) x Map(Y,Z) — Map(X,Z), (f,§) —gof

is continuous, i.e., a morphism in CG.
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Proof. This follows from the Exponential Law. By Yoneda Lemma, we need to find a natural transformation
Homtop (W, Map(X,Y) x Map(Y, Z)) — Homrop(W,Map(X, Z)), VW € CG.
First we observe that
Homrop (W, Map(X,Y) x Map(Y, Z)) = Homep (W, Map(X,Y)) x HomTop (W, Map(Y, Z))
= Homrop (W x X, Y) x Hompop(W x Y, Z).

Now giventwomaps f : Wx X = Y,g: W x Y — Z, we consider the composition

Wx X wxwsxx S wxy Sz

Here A : W — W x W is the diagonal map. This gives naturally the required element of
Hompop (W x X, Z) = HomTep (W, Map(X, Z)).

Another nice property of the category CG is that product of quotient maps is a quotient.

Proposition 7.15. Let p; : X; — Y;,i = 1,2, be quotients in CG. Then p1 X py : X1 X Xp — Y1 X Y, is a quotient.

Proof. We only need to show that if p : X — Y is a quotient map, then the inducedmap g: X X Z =Y x Z
is a quotient. Here X, Y, Z € CG. Evidently, g is surjective on sets. This is equivalent to show that for any
map f : Y x Z — W, if g o f is continuous, that f is continuous. By the Exponential Law,

Hompop (X x Z, W) = Homrep (X, Map(Z, W)).

So g o f is equivalent to a continuous map X — Map(Z, W). Since p : X — Y is a quotient, this shows that
f corresponds to a continuous map Y — Map(Z, W). Using the Exponential Law again,

Homop (Y, Map(Z, W)) = Homrep(Y X Z, W).

This implies the continuity of f. O

Compactly generated weak Hausdorff space

Definition 7.16. A space X is weak Hausdorff if for every compact Hausdorff K and every continuous map
f K — X, the image f(K) is closed in X.

Let wH denote the full subcategory of Top consisting of weak Hausdorff spaces. Let CGWH denote the
full subcategory of Top consisting of compactly generated weak Hausdorff spaces.

Example 7.17. Hausdorff spaces are weak Hausdorff since compact subsets of Hausdorff spaces are closed.
Therefore locally compact Hausdorff spaces are compactly generated weak Hausdorff spaces.

Proposition 7.18. The functor k : wH — CGWH is right adjoint to the embedding i : CGWH C wH. In other
words, we have an adjoint pair

i:CGWH — wH : k
Proof. This follows from Proposition 7.3.
(]

Lemma 7.19. Let X € wH, K compact Hausdorff, and f : K — X continuous. Then f(K) is compact Hausdorff.
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Proof. f(K) is compact and closed. Moreover, f : K — X is a closed map by hypothesis.

Let x1,x, € f(K) be two points. Since X € wH, x1, x, are closed, hence f~!(x), f~!(x;) are disjoint
closed. Since K is compact Hausdorff, there exists disjoint open subsets Uy, U, of K such that f~1(x;) C U;.
Then f(K) — f(K — U;) give disjoint open neighborhoods of x;.

O

Remark 7.20. For a weak Hausdorff X, this lemma says that Z C X is k-closed if and only if Z N K is closed
in K for any compact Hausdorff subspace K C X.

Proposition 7.21. Let X € CG. Then X is weak Hausdorff if and only if the diagonal subspace Ax = {(x, x)|x €
X} is closed in X x X. Here X x X is the product in the category CG.

Proof. Assume X € CGWH. We need to show that Ay is k-closed in X x X. Let
f:(fl,fz):K—)XXX, flK—)X
where K is compact Hausdorff. Let

L = fi(K)N f2(K)

which is compact Hausdorff by Lemma 7.19. Consider the diagonal Ap in L x L, which lies in the image
L—XxX.

Since L is compact Hausdorff, A; is a compact Hausdorff subspace of X x X, hence closed in X x X. It
follows that f~1(Ax) = f~1(AL) is closed.

Conversely, assume X € CG and Ay is closed in X x X. Let f : K — X be a continuous map with K
compact Hausdorff. We need to show f(K) is k-closed in X. Let g : L — X be any continuous map with L
compact Hausdorff. Consider

(f,g):KxL— XxX.

Then
g (f(K) = (f,.8) " (Ax)
which is closed. This shows that f(K) is k-closed in X, hence closed in X. O

Remark 7.22. Recall that X € Top is Hausdorff if and only if Ay is closed in X x X. This proposition says
that CGWH relative to CG is the analogue of Hausdorff spaces relative to Top.

Corollary 7.23. Let {X;}ic1 be a family of objects in CGWH. Then their product T X; in CG also lies in CGWH.
i€l

Proof. Let X = [] X; with 7; : X — X;. We need to show that the diagonal Ay is closed in X x X. Let
icl

mx i X x X = Xix X;, Dj=(mxm) " (Ax,)
Since A; is closed in X; x X;, it follows that Ax = N;¢;D; is closed in X x X. O
Proposition 7.24. Let X € CG, and E C X x X be an equivalence relation on X. Then the quotient space X /E by
the equivalence relation E lies in CGWH if and only if E is closed in X x X.
Proof. By Proposition 7.4, X/E € CG. We need to check the weak Hausdorff property.
Let g : X — Y = X/E denote the quotient map. By Proposition 7.15, the product
gxg: XxX—=YxXY

is also a quotient map. So Ay is closed in Y x Y if and only if (g x ) "' (Ay) = E is closed in X x X. O
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Given X € CG, let Ex denote the smallest closed equivalence relation on X. Ex is constructed as the
intersection of all closed equivalence relations on X. Then the quotient X/Ex by the equivalence relation
Ex is an object in CGWH. This construction is functorial, so defines a functor

h:CG — CGWH.

Proposition 7.25. The functor h : CG — CGWH is left adjoint to the inclusion j : CGWH — CG. That is, we
have an adjoint pair
h:CG —— CGWH :j

Moreover, h preserves the subcategory CGWH, i.e, h o j is the identity functor.

Proof. Let X € CG,Y € CGWH, and f : X — Y continuous. We need to show that f factors through
X/Ex — Y. Consider
fXf:XxX—=YXxY.

Since Ay is closed in Y x Y, (f x f)~!(Ay) defines a closed equivalence relation on X. Therefore Ex C
(f x f)~Y(Ay). It follows that f factors through X — X/Ex — Y.

O

Theorem 7.26. The category CGWH is complete and cocomplete. Limits in CGWH inherit the limits in CG. The
colimits in CGWH are obtained by applying h to the colimits in CG.

Proof. Let F € Fun(I, CGWH), then we need to show
colimF = (colim(jo F)), j(limF)=1lim(joF).

The statement about colimit follows from the fact that /1 o j is the identity functor and & perserves colimits.
For the limit, let
X=]]FG), Y=]]F()
i€l RN
1=]
be the products in CG, which also lie in CGWH by Lemma 7.23. Consider two maps g1, g2 : X — Y where
sil{x}) = 1{x} 5, &{x}) = {f(x)} ;-
l*)] l*)]
Then

lim(jo F) = {x € X|g1(x) = g2(x)} = (g1 x g2) " (Ay)
is a closed subspace of X, hence also lies in CGWH. It can be checked that this is the limit of F. O

Remark 7.27. The proof of the limit part of this theorem does not rely on h. It shows that j : CGWH — CG
preserves all limits. The Adjoint Functor Theorem implies an abstract existence of .

Proposition 7.28. Let X,Y € CGWH. Then Map(X,Y) € CGWH.

Proof. We need to show that the diagonal Ay, (x,y) in Map(X,Y) x Map(X, Y) is closed. Let
evy :Map(X,Y) =Y, f— f(x), forxeX,
which is continuous. Then
AMap(x,y) = Nyex (€vx X evy) "1(Ay)
is closed since Ay is closed in Y x Y. |

Theorem 7.29. Let X,Y,Z € CGWH. Then
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1°. the evaluation map Map(X,Y) x X — Y is continuous;
2°. the composition map Map(X,Y) x Map(Y,Z) — Map(X, Z) is continuous;
3°. the Exponential Law holds: we have a homeomorphism

Map(X x Y, Z) = Map(X,Map(Y, Z)).

Proof. The theorem follows from Proposition 7.28, Proposition 7.11, Theorem 7.13, Proposition 7.14.
a

Therefore CGWH is a full complete and cocomplete subcategory of Top that enjoys the Exponential Law.

We give a brief discussion on “subspace topology” in CG to end this section.

Let X € CG and A be a subset of X. The subspace topology on A may not be compactly generated. We
equip A with a compactly generated topology by applying k to the usual subspace topology. This will be
called the subspace topology in the category CG. When we write A C X, A is understood as s subspace
of X with this compatly generated topology. It is clear that if X € CGWH, then A € CGWH. It can be
checked that if A is the intersection of an open and a closed subset of X, then the usual subspace topology

on A is already compactly generated, so these two notions of subspace coincide in this case.

This new notion of subspace satisfies the standard characteristic property in CG: given Y € CG, a map
Y — A is continuous if and only if it is continuous viewed as a map ¥ — X.

Definition 7.30. In the category CG, amap i : A — X in CG is called an inclusion if A — i(A) is a
homeomorphism, where i(A) is the image of A with the compactly generated subspace topology from X.

Proposition 7.31. Let X LY L Xbe maps in CGWH such that v oi = 1x. Then i is a closed inclusion and r is
a quotient map.
Proof. Itis clear that i is an inclusion and r is a quotient. We show i(X) is a closed inclusion. Consider
(ior,ly): Y = Y X Y.

Let Ay C Y x Y be the diagonal which is closed. Then i(X) = (ior,1y)~!(Ay) is also closed. O
Proposition 7.32. Let X,Y,Z € CGWHand i : X — Y isan inclusion. Theni x 17 : X X Z — Y X Z is also an
inclusion. If i is closed, then sois i x 1.

We will often need the notion of a pair. Given X,Y € CGWH, and subspaces A C X,B C Y, we let

Map((X,A), (Y, B)) = {f € Map(X,Y)|f(A) C B}
be the subspace of Map(X, Y) that maps A to B. It fits into the following pull-back diagram
Map((X, A), (Y, B))

Map(X,Y)

Map(A, B)

Map(A4,Y).

In our later discussion on homotopy theory, we will mainly work with CGWH. In particular, a space
there always means an object in CGWH. All the limits and colimits are in CGWH. For example, given
X,Y € CGWH, their product X x Y always means the categorical product in CGWH. Subspace refers to

the compacted generated subspace topology.
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To simplify notations, we will write
Z =CGWH, h7
for the category CGWH, the quotient category of .7 by homotopy classes of maps.

We will also need the category of pointed spaces.
Definition 7.33. We define the category .7, of pointed spaces where

e an object (X, x¢) is a space X € .7 with a based point xy € X
e morphisms are based continuous maps that map based point to based point

Hom g, (X, x0), (Y, y0)) = Map((X, xo), (Y, y0))-

We will write
Map, (X, Y) = Map((X, x0), (Y, y0))
when base points are not explicitly mentioned. Map, (X, Y) is viewed as an object in .7, whose base point
is the constant map from X to the base point of Y.

The following theorem follows from the analogue for .7 described above.
Theorem 7.34. The category 7 is complete and cocomplete. Let X,Y,Z € J,. Then

1°. the evaluation map Map, (X,Y) A X — Y is continuous;
2°. the composition map Map,(X,Y) AMap,(Y,Z) — Map, (X, Z) is continuous;
3°. the Exponential Law holds: we have a homeomorphism

Map, (X AY,Z) = Map, (X,Map,(Y,Z)).
Here A is the smash product

XxY

XAY = :
XX{yo}U{xO}XY
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8 GROUP OBJECT AND LOOP SPACE

Definition 8.1. Let X,Y € J; be two pointed spaces. A based homotopy between two based maps fy, f; :
X — Y is a homotopy between fy, f relative to the base points. We denote [X, Y]y to be based homotopy
classes of based maps. We define the category h.7, by the quotient of .7, where

Homy, 7 (X, Y) = [X, Ylo.

Definition 8.2. Given (X, xg) € 7, we define the based loop space Q,, X or simply QX by

QX = Map, (S}, X).
In the unpointed case, we define the free loop space

LX = Map(S?, X).

Our goal in this section is to explore some basic algebraic structures of based loop spaces.

Theorem 8.3. The based loop space Q) defines functors
Q: =T, Q:hI—hI.

Proof. Let us first consider Q) : 7, +— Z;. This amounts to show that given f : X — Y, the induced map
f«:Map, (8!, X) — Map, (S},Y), 7 — foy
is continuous. This follows from Proposition 7.14 since this map is the same as
Map, (S', X) x {f} = Map, (5!, Y).
SN
Now we consider () : h.Z, — hJ,. We need to show that if we have a homotopy X \U}, Y realized
8

by F : X x I — Y, then the induced maps fi, g« : Map, (S, X) — Map, (S!,Y) are also homotopic. The
required homotopy is given by

QF : QX X I = QY, (v,t) = F(—,t)o7.

To see the continuity of ()F, we first use Exponential Law to express F equivalently as a continuous map
F:1— Map,(X,Y). Then QF is given by the composition

Map, (!, X) x I 25 Map, (5!, X) x Map, (X,Y) — Map,(S',Y),
which is continuous by Proposition 7.14. O

Definition 8.4. Let C be a category with finite product and terminal object . A group object in C is an
object G in C together with morphisms

u:GxG—=+G, 1:G—=G, e:x—=G

such that the following diagrams commute

1°. associativity:

1x

GxGxG—1 ~GxaG.
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2°. unit:

1xe ex1
GXx——>GXG=——x%xxG.

3°. inverse

u is called the multiplication, 7 is called the inverse, € is called the unit.
Example 8.5. Here are some classical examples.

e Group objects in Set are groups.
e Group objects in Top are topological groups.
e Group objects in hTop are called H-groups.

Proposition 8.6. Let C be a category with finite products and a terminal object. Let G be a group object. Then
Hom(—,G) : C — Group

defines a contravariant functor from C to Group.

Proof. For any X € C, we define the group structure on Hom(X, G) as followings:

e Multiplication: f - g = u(f,g) as

Hom(X,G) x Hom(X,G) — Hom(X, G)
xLa x456 o x¥8cxchq,

e Inverse: f~! = 5(f) as
Hom(X,G) — Hom(X,G)
xLhe ~ xbehg,
e Identity is the image of the morphism Hom(X, ) - Hom(X, G). O

Remark 8.7. The converse is also true, by Yoneda Lemma.

In the category J;, product exists and is given by
(X, XO) X (Y, yo) = (X XY, Xp X ]/0)
It admits a zero (both initial and terminal) object x, which is a single point space.

Lemma 8.8. The quotient functor 5 — h.J, preserves finite product.

Proof. Exercise. O

Theorem 8.9. Let X € 7. Then ()X is a group object in h7,.
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Proof. The multiplication is the * composition of paths as in Definition 2.5
OX x QX — OX.

The inverse is the usual reverse of paths. The constant path 1, is the zero object. The associativity follows
from Proposition 2.7. We leave the details to the readers. O

By Proposition 8.6, an immediate consequence is:
Corollary 8.10. Any X € h.7 defines a functor
[, OX]o: hZ, — Group.
Definition 8.11. Let (X, x9) € ;. We define its suspension XX by the quotient of X x I:

X x {1}

ZX:XXI/(XXE)IUxOXI)

X x {0}

The suspension is the same as the smash product with S!
X =S'AX.

It defines functors
£:% %, h7—h7.

Example 8.12. £5" = §"*1 are homeomorphic for any n > 0.
Theorem 8.13. (X, Q)) defines adjoint pairs

L: 9% —— F:Q L:hZ, —— hJ :Q

Proof. This follows from Theorem 7.34. O

Definition 8.14. Let (X, xg) € ;. We define the n-th homotopy group

‘nn(X,xo) = [S”,X]O.‘

Sometimes we simply denote it by 7, (X).

In particular, we have

e 71y is the path connected component.

e 717 is the fundamental group.
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e Forn > 1, we know that
o (X) = [28"1, X]o = [$" 1, QX]
which is a group since ()X is a group object.

Proposition 8.15. 7, (X) is abelian if n > 2.

Proof. This statement can be also illustrated as follows: O
f f 8 8
= = =
8 8 f f

The following statements are the analogue of what we did in Section 2.

Proposition 8.16. Let X be path connected. There is a natural functor
Ty : I (X) — Group

which sends xq to 11,(X, x0). In particular, there is a natural action of 111 (X, xo) on 7,(X, xo) and all 71,(X, xp)’s
are isomorphic for different choices of x.

Proposition 8.17. Let f : X — Y be a” homotopy equivalence. Then
fr 1 (X, x0) = (Y, f(x0))

is a group isomorphism.
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9 FIBER HOMOTOPY AND HOMOTOPY FIBER

Path space

Definition 9.1. Given a space X € .7, and x € X, we define

e free path space: PX = Map(I, X) and
e based path space: PxX = Map((Z,0), (X, x)).

We denote the two maps

PX ,
N
X X
where po(7) = (0) is the start point and p1(y) = (1) is the end point of the path -y. It induces
p=(po,p1): PX = X x X.

Theorem 9.2. Let X € . Then

1°. p: PX — X x X is a fibration.

2°. The map po : PX — X is a fibration whose fiber at xq is Py, X.
3°. The map p; : Py, X — X is a fibration whose fiber at xg is Oy, X.
4°. po : PX — X is a homotopy equivalence. Py X is contractible.

Proof. (1) We need to prove the HLP of the diagram

Y x {0} PX
7
Ve
2
- p
Ve
Ve
Y x I X xX

By the Exponential Law, this is equivalent to the extension problem

Y x {0} x TUY x I xdl >
o
Y xIxI

This follows by observing that {0} x I U x 9l is a deformation retract of I x I.

(2) follows from the composition of two fibrations

PxﬂXXX.

N

X
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9 FIBER HOMOTOPY AND HOMOTOPY FIBER

(3) follows from the pull-back diagram and the fact that fibrations are preserved under pull-back

Py, X PX

xoxid
X — X x X.

(4) follows from the retracting path trick, which we have seen before in Section 2. O
Definition 9.3. Let f : X — Y. We define the mapping path space Py by the pull-back diagram

Pf%—PY

P1

X Y

An element of Py is a pair (x, 7) where 7 is a path in Y that ends at f(x). Let
10 X — Pfr X — (X,lf(x))

represent the constant path map and p : Py — Y be the start point of the path. We have
ip
N
Y
Theorem 9.4. 1 : X — Py is a strong deformation retract (hence homotopy equivalence) and p : Py — Y isa
fibration. In particular, any map f : X — Y is a composition of a homotopy equivalence with a fibration.
Proof. The first statement follows from the retracting path trick. We prove p is a fibration.

Consider the pull-back diagram

idx f
YxX ——=YxY.

This implies Py — Y x X is a fibration. Since Y x X — Y is also a fibration, so is the composition

p:Pr—=>YxX—=Y. O

This theorem says that in h.7, every map is equivalent to a fibration.

Fiber homotopy

Definition 9.5. Let p; : E; — B and py : E; — B be two fibrations. A fiber map from p; to p, is a map
f:E; = Eysuchthatp; = pyo f:

\/
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9 FIBER HOMOTOPY AND HOMOTOPY FIBER

Two fiber maps fy, f1 : p1 — p2 are said to be fiber homotopic

fo=~s f1

if there exists a homotopy F : E; x I — E; from fj to f; such that F(—,¢) is a fiber map for each t € I.
f 1 p1 — p2is a fiber homotopic equivalence if there exists g : po — p1 such that both f o gand go f are
fiber homotopic to identity maps.

Proposition 9.6. Let p1 : Ey — Band pp : E; — B be two fibrations and f : Ey — Ep be a fiber map. Assume
f + E1 — Ey is a homotopy equivalence, then f is a fiber homotopy equivalence. In particular, f = p;* (b) — p, (D)
is a homotopy equivalence for any b € B.

Proof. We only need to prove that for any fiber map f : E; — E; which is a homotopy equivalence, there is
a fiber map g : E; — E; such that go f ~p 1. In fact, such a g is also a homotopy equivalence and we can
findh : Ey — Ep suchthathog ~p 1. Then f ~p hogo f ~p h, which implies f o g ~p 1 as well.

Let g : E; — Ej represent the inverse of the homotopy class [f] inh7.

We first show that we can choose g to be a fiber map, i.e., p; 0 ¢ = p» in the following diagram

Yol
P1
E, —— B
P18

Otherwise, we observe that p1 og = ppo fog =~ py. We can use the fibration p; to lift the homotopy
p10g =~ pa to a homotopy g ~ g¢’. Then ¢’ is a fiber map, and we can replace g by g’

Now we assume g : E, — E; is a fiber map. The problem can be further reduced to the following

“Claim”: Let p : E — B be a fibration and f : E — E is a fiber map that is homotopic to 1g, then there is a
fiber map I : E — E such thatho f ~p 1.

In fact, let f : E; — E; as in the proposition, g : E; — Ej be a fiber map such that go f ~ 1 as chosen
above. The “Claim” implies that we can find a fiber map h : E; — E; such that ho go f ~p 1. Then the
fiber map ¢ = h o g has the required property that §o f ~p 1.
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9 FIBER HOMOTOPY AND HOMOTOPY FIBER

Now we prove the “Claim”. Let F be a homotopy from f to 1 and G = p o F. Since p is a fibration, we
can construct a homotopy H that starts from 1r and lifts G. Here is the picture

f 1p
1F h
p p
p P p
p P

Combining these two homotopies we find a homotopy F from & o f to 1f that lifts the following homotopy

G(—.2t) 0<t<1/2

G:ExI—B, G(—t = :
G(—2-2t) 1/2<t<1

Here is the picture

We can construct a map K : E x [ x I — B that gives a homotopy between G : E x I — B and the
projection E X I — E 5B (by pushing the two copies of G in G) :

K(—,u,0) = G(—,u),
K(—u,1) =p(-),
K(-,0,t) =p(-),
K(—,1,t)=p(-), Vutel
p
”/’ l
i K
P
t JJ S R
. AG
E

Since p is a fibration, we can find a lift K : E x I x I — E of K such that

K(_lulo) = ZE'(_/u)' 65



9 FIBER HOMOTOPY AND HOMOTOPY FIBER

] K
u EEEEE ----
/// ﬂﬁ‘ /
hof
E
Then we have the following fiber homotopy
hof=K(-,0,0) ~5 K(—,0,1) ~5 K(—,1,1) ~p K(—,1,0) = 1. O

Homotopy fiber
Definition 9.7. Let f : X — Y, we define its homotopy fiber over y € Y to be the fiber of Py — Y over y.

Proposition 9.8. If Y is path connected, then all homotopy fibers of f : X — Y are homotopic equivalent.

Proof. Letyy,y> € Y, and F;, F, be the homotopy fiber over y1,y>. Then
F={(7)ly:1=Y,7(0) =y;,7v(1) = f(x)}

and composition with a path in Y from y; to v, gives a homotopy equivalence between Fy, F,. O

In this case we will usually write the following diagram

F——X

I
Y
where F denotes the homotopy fiber.

Proposition 9.9. If f : X — Y is a fibration, then its homotopy fiber at y is homotopy equivalent to f~'(y).

Proof. We have the commutative diagram

X%Pf

N

Y
where 1 is a homotopy equivalence. Then ! is a fiber homotopy equivalence by Proposition 9.6. O

Corollary 9.10. Let f : X — Y be a fibration and Y path connected. Then all fibers of f are homotopy equivalent.

Proof. Given any two points y1,y» in Y, their fibers f~1(y;), f~(y2) are homotopy equivalent to the corre-
sponding homotopy fibers. The corollary follows since all homotopy fibers are homotopy equilvalent. [J

Recall the following theorem which gives a criterion for fibration that is very useful in practice.

Theorem 9.11. Let p : E — B with B paracompact Hausdorff. Assume there exists an open cover {Uy} of B such
that p~Y(Uy) — Uy is a fibration. Then p is a fibration.

Corollary 9.12. Let p : E — B be a fiber bundle with B paracompact Hausdorff. Then p is a fibration.
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10 EXACT PUPPE SEQUENCE
Definition 10.1. A sequence of maps of sets with base points (i.e. in the category Set,)
(A,a0) L (B,bo) 5 (C,co)
is said to be exact at B if im(f) = ker(g), where im(f) = f(A) and ker(g) = g~ '(co). A sequence
= A1 S A > Ay — -
is called an exact sequence if it is exact at every A;.
Example 10.2. Let H < G be a normal subgroup of G. Then there is a short exact sequence
1-H—-G—G/H—1
in Group. Here we view Group as a subcategory of Set,, where a group is based at its identity element.
Definition 10.3. A sequence of maps in h.7,
= X = X = X1 — -
is called exact if for any Y € h.J, the following sequence of pointed sets is exact

o= Y, Xpslo = [Y, XuJo = [Y, Xu—1lo — -+

The goal of this section is to study the relationship between homotopy groups via exact sequence.

Definition 10.4. Let f : (X,x9) — (Y,yo0) be a map in ;. We define its homotopy fiber Fs in 7, by the

pull-back diagram

Ff — B, Y

lpl
f

X Y
Fr = {(x,7) € X x PY[5(0) = yo,7(1) = f(x)}.

7T

Recall that pq: Py, Y — Y is a fibration, thus

Lemma 10.5. 70: Fy — Xis a fibration.

Note that Fy is precisely the fiber of Py — Y over yo:
Ff——"F
T Po

]/O% Y

So this is the same as our definition before. We will emphasize on the role of based point in this section.

The following lemma is the same as Proposition 9.9. We restate here for convenience.

Lemma 10.6. If f: X — Y is a fibration, then f~1(yo) is homotopy equivalent to its homotopy fiber Fy.
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10 EXACT PUPPE SEQUENCE

For arbitrary map f : X — Y, we still have a canonical map

jif Yyo) = Fy,

which may not be a homotopy equivalence. The homotopy fiber can be viewed as a good replacement of
fiber in homotopy category that behaves nicely for fibrations.

Lemma 10.7. The sequence

FohxLy

is exact at X in h.7,.

Proof. Let yo be the base point of Y. We first observe that f o 7 factors through P,,| Y which is contractible.
Therefore f o 77 is null homotopy. Let Z € hJ,. Consider

2, Fo 55 [2,X]o 5 12, Yo,
Since f o 7 is null homotopic, we have im 7, C ker f..
Let g : Z — X such that [g]y € ker f.. Let G be a based homotopy of f o g to the trivial map:
G:ZxI—=Y.

Since G |7 0}= Yo, it can be regarded as a map (via the Exponential Law)

G:Z — PyY

that fits into the following diagram

Therefore the pair (G, g) factors through Fy. This implies [g]o € im 77.. So ker f. C im 7. O

Notice that the fiber of Fy over x is precisely QY

QY —— F

X=X

We find the following sequence of pointed maps

ox PLaropSxLy.

Q
Lemma 10.8. The sequence QX —f> QY — Ff EAND¢ i> Y is exact in h7,.
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Proof. We construct the commutative diagram (1) in h.7, with all vertical arrows homotopy equivalences

Q 7T
) ax —2 _qay Ff x— vy,

Fo Fr F¢ X Y
Fr is the homotopy fiber of 77 : Fy — X, given by the pull-back

Fr

Py, X
P1

X

Fy
or explicitly

Fr = {([7], [B]) € Py Y x Py, X|f(B(1)) = v(1)}.

Since Fy %, X is a fibration with fiber QY, the map j : QY — Fy is the natural map of fiber into homotopy
fiber which is a homotopy equivalence by Lemma 10.6. By construction, the second square in () commutes.

Explicitly, the map j : QY — F sends a loop [B] based at y to the pair
J([B]) = ({1, [B])-

Similarly, the fiber of the fibration F; — Fris QX. We find the natural map
j:OX — Fy
from fiber into homotopy fiber, which is a homotopy equivalence. Let
(=) 10X - QX, gyt
be the inverse of the loop. We define
J=j0o(=)"1:0X = Fyp.
which is again a homotopy equivalence. Let us form the commutative diagram

0x

K

]

Fy ——>Fx

which defines the map k : OX — F. Consider the diagram

af

0Xx QY

F;-[.
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This diagram is NOT commutative in .7,. However, j o Q)f is homotopic to k, so this diagram commutes in
h.J,. To see this, let us explicitly write

kD) = (v D), (Go0f) (1) = ([x), F(MD.
They are homotopic via

F( 0 = (I o) 7' f [ 1i0a) )-

Therefore the first square in (1) commutes in h.7;. The lemma follows. d

Lemma 10.9. Let X1 — X, — X3 be exact in h7,, then so is QX1 — QX, — QX3.

Proof. For any Y, apply [Y, —]o to the exact sequence X; — X, — X3 and use the fact that () is right adjoint
to the suspension %, i.e. [LY, X;]o = [Y, QX;]o, we obtain an exact sequence. This implies the lemma. O

Theorem 10.10 (Exact Puppe Sequence). Let f : X — Y in J. Then the following sequence in exact in h.J,
e Y 5 QF 5 QX 5 QY 5 Ff— X = Y.

Proof. The theorem follows from Lemma 10.8 and Lemma 10.9.

]

Theorem 10.11. Let p : E — B be a map in J. Assume p is a fibration whose fiber over the base point is F. Then
we have an exact sequence of homotopy groups

-+ = 1y (F) = my(E) = my(B) = m,1(F) = -+ — mo(E) — mo(B).

Proof. Since p is a fibration, F is homotopy equivalent to F,. Observe that
(8%, Q0" X]g = [£"Sg, X]o = [S", X] = ma(X).

The theorem follows by applying [S°, —]o to the Puppe Sequence associated to p : E — B. O

This theorem give a very effective method to compute homotopy groups via fibrations.

Example 10.12. Consider the universal cover exp : R! — S!. The associated long exact sequence implies
(S =0, Vn>1

Proposition 10.13. Ifi < n, then 7;(S") = 0.

Sketch of proof. Let f : S' — S". We need the following fact: any continuous map from a compact smooth
manifold X to 5" can be uniformly approximated by a smooth map. Furthermore, two smooth maps are
continuously homotopic, then they are smoothly homotopic. This follows by performing perturbation
locally (in small neighbourhoods at each point) while compactness implies that the perturbation can be
performed globally.

Thus, we can assume that f is homotopic to a smooth map f’. Then f’ is not surjective (for dimension
reason). Thus, f': S' — (5" — {pt}) ~ R" ~ {pt} is null homotopic. O
Example 10.14. Consider the Hopf fibration S — S? with fiber S. The associated long exact sequence of

homotopy groups implies

m(S?) =2 Z and ,(S?) = 7, (S?) forn > 3.
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Cofibration

Definition 11.1. A map i : A — X is said to have the homotopy extension property (HEP) with respect
to Y if for any map f : X — Y and any homotopy F : A x I — Y where F(—,0) = f o, there exists a
homotopy F : X x I — Y such that

F(i(a),t) = F(a,t), F(x,0)=f(x), VaeAxeXtel.

Definition 11.2. Amap i: A — X is called a cofibration if it has HEP for any spaces.

The notion of cofibration is dual to that of the fibration: fibration is defined by the HLP of the diagram

T
X
If we reverse the arrows and observe that Y x I is dual to the path space Y! via the adjointness of (—) x I

and (—)!, we arrive at HEP (using Exponential Law)

_

Ud<7m

P
Y :

f
7
B S,
iF
-
p
v
LSS Yy
F

Y f X
/
a7
Po / i
/
k
y! A.
F

Definition 11.3. Let f : A — X. We define its mapping cylinder M/ by the push-out

Ax{0}— AXI

X x {0} Mf

XxI.
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11 COFIBRATION

FIGURE 16. The mapping cylinder M

There is a natural map j: My — X x I induced by the inclusion X x {0} — X x I'and f x 1: Ax [ —
X x I. The mapping cylinder topology (i.e. the push-out topology) of My says thata map ¢ : My — Z is
continuous if and only if ¢ is continuous when it restricted to X x {0} and to A x I.

Lemma 11.4. The HEP of i : A — X is equivalent to the property of filling the commutative diagram

M; Y

XxI.

Proposition 11.5. Leti: A — X and j : M; — X x I be defined as above. Then i is a cofibration if and only there
exists r : X X I — M such thatroj = 1p,.

Proof. 1f i is a cofibration, then take Y = M; in the lemma above and we obtain the required map r. On the
other hand, if 7 exists, then any f: M; — Y lifts to for. O

Proposition 11.6. Let i : A — X be a cofibration. Then i is a homeomorphism to its image (i.e. embedding). If we
work in 7, s0 A, X are compactly generated weak Hausdorff. Then i has closed image (i.e. closed inclusion).

Proof. Consider the following commutative diagram obtained from the previous proposition

M;

XxI

This implies that M; is homeomorphic to its image j(M;). Consider the next commutative diagram

A M;
I
X —— XxI.

Ixx{1}
Since A — M;, M; — X x I, X — X x I are all embeddings, soisi: A — X.

Assume now that A, X € .7 are compactly generated weak Hausdorff. By Proposition 7.31, j : M; —
X x I'is a closed inclusion. Since A — M;, X — X x I are also closed inclusions, soisi: A — X.

]
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Remark 11.7. A cofibration is not closed in general. An example is X = {a, b} having two points with the
trivial topology and A = {a} is one of the point.

Definition 11.8. Let A be a subspace of X. We say (X, A) is cofibered if the inclusion A C X is a cofibration.

Proposition 11.9. Let A be a closed subspace of X. Then the inclusion map i : A C X is a cofibration if and only if
X x {0} UA x Iisaretract of X x .
Proof. 1If i is closed, then M; is homeomorphic to the subspace X x {0} UA x I of X x L. O

Remark 11.10. If A C X is not closed, then the mapping cylinder topology for M; and the subspace topology
for X x {0} U A x [ may not be the same. For example, we take choose

X=100,1, A={1,1/2,1/3,---,1/n,---}.

Consider the subspace Z = {(1,1),(1/2,1/2),---,(1/n,1/n),--- } C A x I. Then Z is closed in A x I and
ZN (X x {0}) = @. So Z is closed in the mapping cylinder, but not closed in X x {0} UA x I.

Example 11.11. The inclusion S"~! < D" is a cofibration, cf. Figure 17.

sl w1

_______

FIGURE 17. D" x {0} US"~! x I is a retract of D" x I

Proposition 11.12. Let f : A — X be any map. Then the closed inclusion
11 :A%Mf, a—r (ﬂ,l)

is a cofibration.

Proof. Figure 11 shows My x {0} U A x I is a retract of My x I. So iy is a cofibration.

X

FIGURE 18. Retract of Mf x I
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Example 11.13. The inclusion A — A X I,a — a x {0}, is a cofibration. In fact, we can view it as
A— MlA

where 14 : A — A is the identity map.

Definition 11.14. Let A be a subspace of X. A is called a neighborhood deformation retract (NDR) if there

exists a continuous map u : X — [ with A = u~1(0) and a homotopy H : X x I — X such that
H(x,0) =x VxeX
H(a,t)=a if(at)e AxI
H(x,1) € A ifu(x) <1.

Note that if A is a NDR of X, then A is a strong deformation retract of the open subset 1 ~1([0,1)) of X.

Theorem 11.15. Let A be a closed subspace of X. Then the following conditions are equivalent

1°. (X, A) is a cofibered pair.

2°. Aisa NDR of X.

3°. X x {0} UA x ILisaretract of X x I.

4°. X x {0} U A x I is a strong deformation retract of X x I.

Proof. We have seen the equivalence between (1) and (3).
(3) = (2). Let r be a retraction map
r:XxI—-Xx{0fJUAXIL
Let tx : X x I = X, t; : X x I — I be the projections. We obtain the data for NDR by

u:X—1, u(x)=sup|t—mror(x,t)]
tel

and
H:XxI— X, H(x,t)=mxor(x,t).

(2) = (3). Given the data (1, H) for NDR. We define a retraction 7 : X x [ — X x {0} UA x [ by

r(x,t) = (x,0) if u(x)=1

r(x,t) = (H(x,2(1 —u(x))t),0) if 1/2<u(x) <1

r(x, ) = (H(x,t/(2u(x))),0) if 0<u(x)<1/2, 0<t<2u(x)
r(x,t) = (H(x,1),t —2u(x)) if 0<u(x)<1/2, 2u(x)<t<1
r(x, t) = (x,t) if u(x)=0.

(4) = (3). Obvious.
(3) = (4). Letr: X x I — X x {0} U A x I be a retraction map. Then the following homotopy
F:XXIxI—=Xx{0}JUAxIrelXx{0}UAXI
F(x,t,8) = (mxor(x,(1—9)t), (1 —s)myor(x,t)+st)

gives the required strong deformation retract.
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Basic properties
Proposition 11.16. Leti: A — X be a cofibration, f : A — B is a map. Consider the push-out
f

A———B

X——=Y.

Then j : B — Y is also a cofibration. In other words, the push-out of a cofibration is a cofibration.

Proof. The proof is dual to Proposition 5.15.

Proposition 11.17. Leti: X — Yand j: Y — Z be cofibrations. Then joi: X — Z is also a cofibration.

Proof. Exercise. O

Proposition 11.18. Ifi : A — X is a cofibration and A is contractible, then the quotient map X — X/A isa
homotopy equivalence.

Proof. Exercise. O

The next proposition is very useful in constructing homotopies.
Proposition 11.19. Let A C X and B C Y be closed inclusions which are both cofibrations. Then the inclusion
XXBUAXY CXXY

is also a cofibration. As a consequence, A x B — X X Y is a cofibration.

Proof. Letu : X — I,H: X x I — X be the data of NDRfor A — X,andv:Y — [,K:Y x I — Y be the
data of NDR for B — Y. Consider the following maps
p:XxY =1, ¢(x,y)=min{u(x),o(y)}

and

(x,y) if u(x) = v(y) =0
0

SiXxYxI—oXxY, Z(oyt)= (H(x,t), (y,tgg;‘;)) if u(x) < o(y) #

(Ht25), Ky, 1)) 30 # u(x) = o(y)

Then (¢, %) defines a data of NDR for X x BUA XY C X x Y, so a cofibration. As a special case, if B = @,
then A x Y — X x Y is a cofibration.

Now consider the following push-out diagram

AXB—>AXY

| |

XXB——=XXxBUAXY

So all arrows in this diagram are cofibrations. It follows that A x B — X x Y is a cofibration.
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Let f : A — X be a map. Consider the diagram of mapping cylinder

io
A——AXxI

|

X*>Mf.

A
VN
! X.

There is a natural commutative diagram

My
Here i1(a) = (a,1),r(a,t) = f(a),r(x,0) = x.
It is easy to see that r is a homotopy equivalence. We have the following dual statement of Theorem 9.4.

Theorem 11.20. The map r : My — X is a homotopy equivalence, and iy : A — My is a cofibration. In particular,
any map f : A — X is a composition of a cofibration with a homotopy equivalence.

Definition 11.21. Leti: A — X,j: A — Y be cofibrations. A map f : X — Y is called a cofiber map if the

following diagram is commutative
o
X s Y.

A cofiber homotopy between two cofiber maps f, g : X — Y is a homotopy of cofiber maps between f and
g. Cofiber homotopy equivalence is defined similarly.

The following result is the cofibration analogue of Proposition 9.6.
Proposition 11.22. Leti: A — X,j : A — Y be cofibrations. Let f : X — Y be a cofiber map. Assume f is a

homotopy equivalence. Then f is a cofiber homotopy equivalence.

Cofiber exact sequence

Now we work with the category .7, and h.7,. All maps and testing diagrams are required to be based.

Definition 11.23. A based space (X, xo) is called well-pointed, if the inclusion of the base point xy € X is a
cofibration in the unbased sense.

Definition 11.24. Let (X, xp) € 7. We define its (reduced) cone by
C,X=XAN=XxI/(Xx{0YUxoxI).

Proposition 11.25. If X is well-pointed, then the embedding i1 : X — C,X where i1(x) = (x, 1) is a cofibration.
Definition 11.26. Let f : (X, x9) — (Y, v0) € Z. We define its (reduced) mapping cylinder by
M*f = Mf/{x() X I}.
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FIGURE 19. The reduced cone C, X

FIGURE 20. The reduced mapping cylinder My

If (X, xo) is well-pointed, then the quotient My — M, is a homotopy equivalence.

Given f : X — Y in 7, we define its (reduced) homotopy cofiber C, by the push-out

i

XHC*X

4o,

Y —— Gy

If X is well-pointed, then j : Y — C,y is also a cofibration. Note that the quotient of C, ¢ by Y is precisely
2 X. We can extend the above maps by

X Y Cs X Y 2C,f 22X
Definition 11.27. A sequence of maps in h.,
= X1 = X = X1 — -

is called co-exact if for any Y € h.7, the following sequence of pointed sets is exact

= [Xn_l,Y]o — [Xn, Y]() — [Xn+1,Y]0 —

Theorem 11.28 (Co-exact Puppe Sequence). Let f : X — Y in J between well-pointed spaces. The following
sequence is co-exact in h.7

X Y Cuf X Y ECyf ¥2X

Lemma 11.29. Let f : A — X be a cofibration between well-pointed spaces. Then the natural embedding
C*(A) — C*f

is a cofibration.
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Proof. This follows from the push-out diagram

A——=C.(A)
4,
X / Cur
]
Theorem 11.30. Let f : A — X be a cofibration between well-pointed spaces. Then the natural map
7:Cip = X/A
is a homotopy equivalence. In other words, the cofiber is homotopy equivalent to the homotopy cofiber.
Proof. Since C4(A) — C,y is a cofibration and C,(A) is contractible, Proposition 11.18 implies
Cif = Cuf/Cu(A) = X/ A
is a homotopy equivalence. O

Theorem 11.31. Leti: A — X be a cofibration between well-pointed spaces. The following sequence

A X X/A TA X %(X/A) S2A

is co-exact in h.7,.

78



12 CW COMPLEX

12 CW COMPLEX

CW complex

Recall that S"~! < D" is a cofibration satisfying HEP, where, D" is the n-disk and S"~! = 9D" is its
boundary, the (n — 1)-sphere. Let

e" = (D")° =D"—oD"
denote the interior of D", the open disk known as the n-cell.

The category of CW-complex consists of topological spaces that can be built from n-cells (like lego, and
thus behaves nicely just like S"~! < D"). Moreover, it is large enough to cover most interesting examples.

Definition 12.1. A cell decomposition of a space X is a family
&= {exla € Ju}
of subspaces of X such that each ¢}} is a n-cell and we have a disjoint union of sets
X=]]e

The n-skeleton of X is the subspace

X'"= ] e

Q€ Jmm<n
Definition 12.2. A CW complex is a pair (X, £) of a Hausdorff space X with a cell decomposition such that
1°. Characteristic map: for each n-cell ¢j, there is a characteristic map
Dpn: D" = X

such that the restriction of @, to (D")° is a homeomorphism to e} and @, (S" 1) c X" 1.
2°. C=Closure finiteness: for any cell ¢ € £ the closure & intersects only a finite number of cells in £.
3°. W=Weak topology: a subset A C X is closed if and only if A Néis closed in é for eache € €.

We say X is an n-dim CW complex if the maximal dimension of cells in £ is n (n could be o).

Note that the Hausdorff property of X implies that ¢ = ®,(D") for each cell e € £. The surjective map
®, : D" — éis a quotient since D" is compact and ¢ is Hausdorff. Let us denote the full characteristic maps

o:[[p" 2% x.
ec&

Then the weak topology implies that @ is a quotient map. This implies the following proposition.
Proposition 12.3. Let (X, &) bea CW complex. Then f : X — Y is continuous if and only if

fod,:D" =Y
is continuous for each e € £.
Proposition 12.4. Let (X, &) be a CW complex. Then any compact subspace of X meets only finitely many cells.
Proof. Assume K is a compact subspace of X which meets infinitely many cells. Let x; € KNe;,i =1,2,---,
where ¢;’s are different cells. Consider the subset

Zm == {x7ﬂ/ xm+1/ e }/ m Z 1
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By the closure finiteness, Z,, intersects each closure ¢ by finite points, hence closed in € by the Hausdorff
property. By the weak topology, Z;, is a closed subset of X, hence closed in K. Observe

) Zn=0
m>1
but any finite intersection of Z,,’s is non-empty. This contradicts the compactness of K. O

Proposition 12.5. Let (X, E) be a CW complex and X" be the n-skeleton. Then X is the colimit (i.e. direct limit) of
the telescope diagram
X' X2 o X — ...

Proof. This is because f : X — Y is continuous if and only if f : X" — Y is continuous for each n.

Proposition 12.6. Let (X, &) bea CW complex. Then X is compactly generated weak Hausdorff.

Proof. X is Hausdorff, hence also weak Hausdorff. We check X is compactly generated.

Assume Z C X is k-closed. Since the closure of each cell ¢ is compact Hausdorff, Z N éis closed in é. The
weak topology implies that Z is closed in X.

O
Example 12.7. Here are some classical examples.

e The n-sphere S" as a 0-cell and an n-cell:

In this case, we have
St =eue”

e The n-sphere S" with two n-cells and a (n — 1)-sphere:

n
£+

Thus we have
S"=et Ue” ust!

= (erueyu(ertuer ) ueu (L uel)
80



12 CW COMPLEX

e Gride/cube decomposition of R" into n-cubes I" ~ D".

e CPP": (C"t! —{0})/ ~ and we have
cr’ccplc---cp" !t cCP" C .-+ C CP™.
Moreover,
CP" —CP" ' = {[z0,...,2] | 20 # 0}
~C" e,
Thus CIP" has one cell in every even dimension from 0 to 2n with characteristic map

®,,: D —— CP”"

(Goesz) o [0zt T 1P

Definition 12.8. A subcomplex (X', £’) of the CW complex (X, £) is a closed subspace X' C X with a cell
decomposition & C €. We will just write X’ C X when the cell decomposition is clear. We will also write
X" = |&'|. Equivalently, a subcomplex is described by a subset &’ C € such that

e1 € 5’,62 e Nep D= e € g
Example 12.9. The n-skeleton X" is a subcomplex of X of dimension < n.
Attaching cells
Definition 12.10. Given f : S"~! — X. Consider the push-out
f

sl ——= X

[
D"

D" X

We say D" ][ X is obtained by attaching an n-cell to X.
81



12 CW COMPLEX

(S”fl) gn—1

- @
DH

FIGURE 21. Attaching a cell

®y is called the characteristic map of the attached n-cell. More generally, if we have a set of maps
fa : "1 — X, then the push-out

[, 5" X f=11fs

&y

LI D"

(LID") g X
is called attaching n-cells to X.
Example 12.11. The n-sphere $" can be obtained by attaching an n-cell to a point.

el

Proposition 12.12. Let (X, &) be a CW complex, and € = ] E™ where E™ is the set of n-cells. Then the diagram

U Sn—l 0P Xn—l " — L[ q)e

ec&n eclh
H D" o xn

ec&n

is a push-out. In particular, X" is obtained from X"~ by attaching n-cells in X.
Proof. This follows from the fact that X" ! is a closed subspace of X" and the weak topology. O

The converse is also true. The next theorem can be viewed as an alternate definition of CW complex.
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Theorem 12.13. Suppose we have a sequence of spaces
o=X"'cxXcx'c...cx"cx"tc...

where X" is obtained from X"~ by attaching n-cells. Let X = U, >0 X" be the union with the weak topology: A C X
is closed if and only if AN X" is closed in X" for each n. Then X is a CW complex.

The theorem follows directly from the next lemma.

Lemma 12.14. Let X be a (n — 1)-dim CW complex and Y is obtained from X by attaching n-cells. Then Y is a
n-dim CW complex.

Proof. We need to check the following properties of Y.

H: The Hausdroff property of Y. Take x,y € Y. If x lies in an n-cell, then it is easy to separate x from y.
Otherwise, let x,y € X and take their open neighbourhoods U, V in X that separate them. Consider
attaching the n-cells via the push-out:

Us.
X

=

Then g; ' (U), gy ' (V) are open in S"~1. Take their open neighbourhoods Uy, V, in D", i.e.
UNS" =g (U), VansS" =g (V)

such that Uy NV, = @. Then U U (UJ, Uy) and V U (U, Vi) are separated neighbourhoods of x, y.
C: Closure finiteness follows from the fact that " ! is compact.
W: Weak topology follows from the push-out construction.

Definition 12.15. Let A be a subspace of X. A CW decomposition of (X, A) consists of a sequence
A=Xx"'cxcxlc--cXx

such that X" is obtained from X"~! by attaching n-cells and X carries the weak topology with respect to the
subspaces X". The pair (X, A) is called a relative CW complex.

We say (X, A) has relative dimension 7 if the maximal dimension of cells attached is # (1 could be o).

Note that for a relative CW complex (X, A), A itself may not be a CW complex.
Proposition 12.16. Let (X, A) be a relative CW complex. Then A C X is a cofibration.

Proof. S"~! — D" is a cofibration, and cofibration is preserved under push-out, so each
Xt X"
is a cofibration. The proposition follows since composition of cofibrations is a cofibration. O

Corollary 12.17. Let X be a CW complex and X' be a CW subcomplex. Then X' — X is a cofibration.

Proof. (X,X') is a relative CW complex. O
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Product of CW complexes
Let (X, &), (Y, £) be two CW complexes. We can define a cellular structure on X x Y with n-skeleton
(X xY)"={ef xegl0<k+1<mn, ¢ €&e;eé}
and characteristic maps

kl .
Py = (Pg, D) - D{;y — X xY.

Here we use the fact that DZ,J/EI = DK x Dlﬁ topologically.

Example 12.18. Cellular decomposition for S! x S'.

FIGURE 22. Cellular decomposition for S x S!

This natural cellular structure is closure finite. However, the product topology on X x Y may not be the
same as the weak topology, so the topological product may not be a CW complex. Observe that X,Y are
compactly generated weak Hausdorff, and we can take their categorical product in the category 7. Then
this compactly generated product will have the weak topology, and becomes a CW complex.

By Proposition 7.8, we have the following useful criterion.

Theorem 12.19. Let X.Y be CW complexes and Y be locally compact. Then the topological product X x Y is a CW
complex.

Example 12.20. If X is a CW complex, then X x I isa CW complex.

Definition 12.21. A CW complex X is called locally finite if each point in X has an open neighborhood that
intersects only finite many cells.

It is easy to see that locally finite CW complexes are locally compact Hausdorff.

Corollary 12.22. Let X.Y be CW complexes and Y be locally finite. Then the topological product X x Y isa CW
complex.
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13 WHITEHEAD THEOREM AND CW APPROXIMATION

Relative homotopy group

Definition 13.1. We define the category TopP of topological pairs where an object (X, A) is a topological
space X with a subspace A, and morphisTMX, A) — (Y, B) are continuous maps f : X — Y such that
f(A) C B. A homotopy between two maps f1, f> : (X, A) — (Y, B) is a homotopy F : X x I — Y between
fo, f1 such that F|x;(A) C Bforanyt € I.

The quotient category of TopP by homotopy of maps is denoted by hTopP. The pointed versions are
defined similarly and denoted by TopP, and hTopP,. Morphisms in hTopP and hTopP, are denoted by

(X, 4),(Y,B)],  [(X,A),(Y,B)lo.

When we work with the convenient category .7, we have similar notions of 7P for a pair of spaces,
hJP for the quotient homotopy category, and .7 P,, h.7 P, for the pointed cases.

Theorem 13.2. Let f : (X, A) — (Y, B) in hIP,. Let f = f| 4. Then the sequence
(X,A) = (Y,B) = (Cf,Cj) = (X, A) — (Y, B) = £(Cy,Cy) — $2(X,A) — -

is co-exact in h.7 P,.

This generalizes the co-exact Puppe sequence to the pair case. See [Spanier] for a proof.

Definition 13.3. Let (X, A) € 7 P,. We define the relative homotopy group 7, (X, A) by
(X, A) = [(D",8"71), (X, A)lo.

We will also write 77, (X, A; x9) when we want to specify the base point.

Note that
(D", 5" 1 ~ 2 1(DL,80), n>2

Therefore 71,(X, A) is a group for n > 2 due to the adjunct pair (X, Q).
Lemma 134. f : (D",S"" 1) — (X, A) is zero in 7w,(X, A) if and only if f is homotopic rel S"~! to a map whose
image lies in A.
Proof. Assume [f]op = 0in 71,(X, A). Then we can find a homotopy
F:D"xI— X suchthat F(—0)=xp, F(S"Lt)cA, F(-1)=f(-).
Let us view the restriction of F to S"~! x U D" x {0} as defining a map (via a natural homeomorphism)
g: (D", 8" 1 = (X, A).
Then F can be viewed as defining a homotopy ¢ ~ f rel "1 as required.
Conversely, assume there exists g : (D",5" 1) — (X, A) such that g ~ f rel S"~!. Let
F:D"xI— D"
be a homotopy from the identity to the trivial map. Then the homotopy
Fog:D"xI— X

shows that [g]o = 0, hence [f]o = 0 as well.
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This lemma can be illustrated by the following diagram
Snfl — S A
£ g /1 j
7
—
D" | X
~___ 7
f
Here ¢ maps D" to A and g ~ f rel S"~ 1.
Theorem 13.5. Let A C X in . Then there is a long exact sequence
o T (A) 5 (X)) 5 (X, A) S 1 (A) - s p(X)
Here the boundary map 9 sends ¢ € [(D",S"1), (X, A)]o to its restriction to S"~1.
Proof. Consider
fe(8°{0}) = (5 59).
Let f = flgoy : {0} — S°. Itis easy to see that
(Cf,Cp) = (D', 8%).

Since ¥*(8) = ", %(D",S"1) = (D"*1,5"), the co-exact Puppe sequence

(8%,{0}) = (8%,8%) — (D', 8% — (st {0}) — (S',St) — (D?,81) — (82,{0}) — - --

implies the exact sequence

o (A () 5 (X, A) D 1 (A) - s (X)

Definition 13.6. A pair (X, A) is called n-connected (n > 0) if 779(A) — 7p(X) is surjective and

nk(X,A;xO) =0 V1<k< n,xg € A.

From the long exact sequence
e (A) S m(X) B (X, A) B 1 (A) - mo(X)
we see that (X, A) is n-connected if and only if for any xy € A

{n,(A, x0) — 10(X, x0) is bijective for r < n

(A, x0) = 1,(X, xp) is surjective
Definition 13.7. Amap f : X — Y is called an n-equivalence (n > 0) if for any xy € X

{f* s (X, x0) — (Y, f(xp)) is bijective for r < n

fut mn(X, x0) = (Y, f(x0)) is surjective
f is called a weak homotopy equivalence or co-equivalence if f is n-equivalence for any n > 0.

Example 13.8. For any 1 > 0, the pair (D"*!,5") is n-connected.
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Whitehead Theorem
Lemma 13.9. Let X be obtained from A by attaching n-cells. Let (Y, B) be a pair such that

m,(Y,B;b) =0,Vb € B if n>1
mo(B) — mo(Y) is surjective if n =0.

Then any map from (X, A) — (Y, B) is homotopic rel A to a map from X to B.
Proof. This follows from the universal property of push-out and Lemma 13.4.
[[s"* ! —A—=B

//?4
/
Pad /
- I

D" ——=X | Y

O

Theorem 13.10. Let (X, A) be a relative CW complex with relative dimension < n. Let (Y,B) be n-connected
(0 < n < o0). Then any map from (X, A) to (Y, B) is homotopic relative to A to a map from X to B.

AHB

L)

Proof. Apply the previous Lemma to
AcXlcX'c--.cX"=X
and observe that all embeddings are cofibrations. O
Proposition 13.11. Let f : X — Y be a weak homotopy equivalence, P be a CW complex. Then
f« [P, X] = [P,Y]
is a bijection.
Proof. We can assume f is an embedding and (Y, X) is co-connected. Otherwise replace Y by M.
Surjectivity is illustrated by the diagram (applying Theorem 13.10 to the pair (P,?))

[
Py Y

Injectivity is illustrated by the diagram (observing P x I, P x dI are CW complexes)

Pxdl —= X

7
e

PxI || Y
_ 7
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O

Theorem 13.12 (Whitehead Theorem). A map between CW complexes is a weak homotopy equivalence if and only
if it is a homotopy equivalence.

Proof. Let f : X — Y be a weak homotopy equivalence between two CW complexes. Apply Proposition
13.11to P = X and P =Y, we find bijections

[ X X] = [X)Y], fe:[Y,X] =Y, Y]
Let g € [Y, X] such that f,[g] = 1y. Then f o g >~ 1y. On the other hand,

filgo fl=1fogofl=[fol] = [f] = fillx].

We conclude [g o f] = 1x. Therefore f is a homotopy equivalence. The reverse direction is obvious. O

Remark 13.13. This is basically the combination of Proposition 13.11 and Yoneda Lemma.

Cellular Approximation

Definition 13.14. Let (X,Y) be CW complexes. A map f : X — Y is called cellular if f(X") C Y” for any
n. We define the category CW whose objects are CW complexes and morphisms are cellular maps.

Definition 13.15. A cellular homotopy between two cellular maps X — Y of CW complexes is a homotopy
X x I — Y that is itself a cellular map. Here I is naturally a CW complex. We define the quotient category
hCW of CW whose morphisms are cellular homotopy class of cellular maps.

Lemma 13.16. Let X be obtained from A by attaching n-cells (n > 1), then (X, A) is (n — 1)-connected.

Proof. Letr < n. Consider a diagram

St——A

oot

Dl——=X
Since D" is compact, f (D") meets only finitely many attached n-cells on X, say ey, ---,eu. Let p; be the
center of ¢;. Letel = e; —{p;}. Y = X —{p1,--,pm}. We subdivide D" into small disks D" = U, D],
such that f(D}) C Y or f(D}) C e;. For each D} such that f(D}) C e; but not in Y, we use the fact that
(e;,€f) = (D",8"" 1) is (n — 1)-connected to find a homotopy rel 9D} to adjust mapping D}, into ;. It glues
together to obtain

Srfl

Ve
Ve
Z

Dy

Y

J

e

Then we can further find a homotopy
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Corollary 13.17. Let (X, A) be a relative CW complex, then for any n > 0, the pair (X, X") is n-connected.

Theorem 13.18. Let f : (X, A) — (X, A) between relative CW complexes which is cellular on a subcomplex (Y, B)
of (X, A). Then f is homotopic rel Y to a cellular map g : (X, A) — (X, A).

Proof. Assume we have constructed f, 1 : (X, A) — (X, A) which is homotopic to f rel Y and cellular on
the (n — 1)-skeleton X"~1. Let X" be obtained from X"~! by attaching n-cells. Consider

Xn—l Xn

X" f n—1 X
Since X" is obtained from X"~! by attaching n-cells and (X, X") is n-connected,
xm 1 X
fn

we can find a homotopy rel X"~ ! from f,_1|x» : X" — X to a map X" — X". Since f is cellular on Y,
we can choose this homotopy rel Y by adjusting only those n-cells not in Y. This homotopy extends to a
homotopy rel X"~ 1 UY from f,, 1 toamap f, : X — X since X" C X is a cofibration. Then fo works. [

Theorem 13.19 (Cellular Approximation Theorem). Any map between relative CW complexes is homotopic to a
cellular map. If two cellular maps between relative CW complexes are homotopic, then they are cellular homotopic.

Proof. Apply the previous Theorem to (X, @) and (X x I, X x dI). O

This theorem says that hCW is a full subcategory of hTop.

CW Approximation

Definition 13.20. A CW approximation of a topological space Y is a CW complex X with a weak homotopy
equivalence f : X = Y.

Theorem 13.21. Any space has a CW approximation.
Proof. We may assume Y is path connected. We construct a CW approximation X of Y by induction on the

skeleton X". Assume we have constructed f,, : X — Y which is an n-equivalence. We attach an (n + 1)-cell
to every generator of ker (7, (X") — 7,(Y)) to obtain X"*1. We can extend f, toamap f, 11 : X"*1 =Y

18" —— X"

Since (X"*1,X") is also n-connected, f,.1 is an n-equivalence. By construction and the surjectivity of

700 (X") — 71, (X"1), f,41 defines also an isomorphism for 71, (X" 1) — 71, (Y).
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Now for every generator S!'*! of coker(7r,1(X"*1) — 7,,1(Y)), we take a wedge sum to obtain
X" = XLy (v, s,

Then the induced map f,,11 : X"*! — Y extends f, to an (n + 1)-equivalence. Inductively we obtain a
weak homotopy equivalence foo : X = X* = Y. O

Theorem 13.22. Let f : X — Y. Let I'X — X, and I'Y — Y be CW approximations. Then there exists a unique
map in [IX,TY] making the following diagram commutative in hTop

rx L1y
R

X Y

Proof. Weak homotopy equivalence of TY — Y implies the bijection [I'x,T'y] — [I'x, Y].
|

Definition 13.23. Two spaces Xj, X, are said to have the same weak homotopy type if there exist a space
Y and weak homotopy equivalences f; : Y — X;,i =1,2.

Theorem 13.24. Weak homotopy type is an equivalence relation.

Proof. Exercise.

90



14 EILENBERG-MACLANE SPACE

14 EILENBERG-MACLANE SPACE
7,(S") and Degree

We have seen that 713 (5") = 1 for k < n. In this subsection we compute
i (S") = [S", 5o = Z.
Given f : S" — §", its class [f] € Z under the above isomorphism is called the degree of f.
Theorem 14.1 (Homotopy Excision Theorem). Let (A,C), (B, C) be relative CW complex. Let X be the push-out

C——8B

L

A—X
If (A, C) is m-connected and (B, C) is n-connected, then
(A, C) — m;i(X,B)
is an isomorphism for i < m + n, and a surjection for i = m + n.
Corollary 14.2 (Freudenthal Suspension Theorem). The suspension map
7i(S") = i1 (8"

is an isomorphism for i < 2n — 1 and a surjection for i = 2n — 1.

Proof. Apply Homotopy Excision to X = S"*1,C = S", A the upper half disk, B the lower half disk. O

Freudenthal Suspension Theorem holds similarly replacing S" by general (n — 1)-connected space.

Proposition 14.3. 71,(S") = Z forn > 1.

Proof. Freudenthal Suspension Theorem reduces to show 7,(5?) = Z. This follows from the Hopf fibration

st 83 - g2,
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Eilenberg-MacLane Space

Definition 14.4. An Eilenberg-MacLane Space of type (G, n) is a CW complex X such that 77,(X) = G and
(X) = 0 for k # n. Here G is abelian if n > 1.

As we will show next, Eilenberg-MacLane Space of any type (G, n) exists and is unique up to homotopy.
It will be denoted by K(G, n). The importance of K(G, n) is that it is the representing space for cohomology
functor with coefficients in G

H"(X;G) = [X,K(G,n)] forany CW complex X.

Theorem 14.5. Eilenberg-MacLane Spaces exist.

Proof. We prove the case for n > 2. There exists an exact sequence
0O—-F—-FKF—-G—0

where Fj, F, are free abelian groups. Let B; be a basis of F;. Let
A=\ s, B=\/ s
i€B, j€B,
A, B are (n — 1)-connected and 71, (A) = F;, 7, (B) = F,. Using the degree map, we can construct

f:A—B

such that 7t,(A) — 71,,(B) realizes the map F; — F,. Let X be obtained from B by attaching (n + 1)-cells
via f. Then X is (n — 1)-connected and 77, (X) = G. Now we proceed as in the proof of Theorem 13.21 to
attach cells of dimension > (# + 2) to kill all higher homotopy groups of X to get K(G, n). O

Theorem 14.6. Let X be an (n — 1)-connected CW complex. Let Y be an Eilenberg-MacLane Space of type (G, n).
Then the map
¢: X, Y] = Hom(m,(X), mu(Y)), f— fe

is a bijection. In particular, any two Eilenberg-MacLane Spaces of type (G, n) are homotopy equivalent.

Proof. Let us first do two simplifications. First, as in the proof of Theorem 13.21, we can find a CW complex
Z and a weak homotopy equivalence g : Z — X such that the n-skeleton of Z is

z"=\/s".
i€l
By Whitehead Theorem, g is also a homotopy equivalence. So we can assume the n-skeleton of X is
X" =\/s"
i€l
Secondly, let X"*! be the (1 + 1)-skeleton of X. Then 7,,(X) = 7, (X"*1). Let f : X — Y. Since X

is obtained from X"*! by attaching cells of dimension > n + 2 and 71;(Y) = O for all k > n, any map
X"*t1 Y can be extended to X — Y. So the natural map

(X, Y] — [x"1,Y]
is a surjection. Now assume f : X — Y such that its restriction to X"*! is null-homotopic. Since X"+ C X
is a cofibration, f is homotopic to a map which shrinks the whole X"*! to a point. Since 7;(Y) = 0 for all
k > n, f is further null-homotopic. This implies that

[X,Y] — [X"F1,Y]
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is a bijection. So we can also assume X = X"*! has dimension at most 7 + 1.

Assume X is obtained from X" by attaching (n + 1)-cells via the map

x:\/s"—=\/ s

i€l jej

e Injectivity of ¢. Assume f : X — Y such that ¢(f) = 0. Then the restriction of f to

X"=\/§">Y
j€l

is null-homotopic. Since X" < X is a cofibration, f is homotopic to a map which shrinks X" to a

point, so can be viewed as a map

\/ s = .
icl
Since 71,,11(Y) = 0, this map is also null-homotopic. This shows [f] = 0.
e Surjectivity of ¢. Let ¢ : 71,(X) — 7, (Y) be a group homomorphism. Since

i (X)) = m(X)
is surjective and 71, (X") is free, we can find a map

fa: X" =Y

such that f. : 71,(X") — 7, (Y) coincides with ¢ o j. By construction, f; o x is null-homotopic, so

we can extend f, toamap f : X — Y which gives the required group homomorphism.

Now assume we have two Eilenberg-MacLane Spaces Y1, Y, of type (G, n). We have the identification

[Y1,Y2] = Hom(7, (Y1), a (Y2)).

Then a group isomorphism 7, (Y1) — 71, (Y2) gives a homotopy equivalence Y; — Y;.

O

Remark 14.7. A classical result of Milnor says the loop space of a CW complex is homotopy equivalent to a

CW complex. Since for any X, we have 713 (QX) = 75 1(X). Therefore
QK(G,n) ~ K(G,n—1).
Example 14.8. S' = K(Z,1) and \V, S! = K(Z™,1).

Example 14.9. Consider the fibration
St — s¥ 1 — Cp".
We have natural embeddings

cPlccplc---CcPttcCPt C - C CP¥
and
stcs®c...stcslc...cs™
Here CIP* and 5% are the corresponding colimits. This gives rise to the fibration
St — 5% — CP™.
Observe that 71 (S*) = 0 for any k. In fact, for any map f : S¥ — S%, since S¥ is compact,

f(sky c 8", forsome n > k.
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14 EILENBERG-MACLANE SPACE

Since 1 (S") = 0, f is homotopic to the trivial map in S”, hence also in S%°. Using the long exact sequence
of homotopy groups associated to the fibration S! — $* — CIP®, we find

CP> = K(Z,2).
Example 14.10. A knot is an embedding K : S' < S°. Let G = 711(S®> — K). Then
$3 —K=K(G,1).

Postnikov Tower

Postnikov tower for a space is a decomposition dual to a cell decomposition. In the Postnikov tower
description of a space, the building blocks of the space are Eilenberg-MacLane spaces.

Definition 14.11. A Postnikov tower of a path-connected space X is a tower diagram of spaces

- Xpq1 Xn X2 X1 .

with a sequence of compatible maps f, : X — X, satisfying

1°. fu : X = X, induces an isomorphism 7y (X) — 7 (X,) forany k < n
2°. m(Xn) =0fork >n
3°. each X,, — X,,_1 is a fibration with fiber K(7t,,(X), n).

Xy <— K(mp(X), n)
)
X— Xy
n—1

Xy, is called a n-th Postnikov approximation of X.

Note that if X is (n — 1)-connected, then X,, = K(7t,(X), n). In general, a Postnikov tower can be viewed
as an approximation of a space by twisted product of Eilenberg-MacLane spaces.

Theorem 14.12. Postnikov Tower exists for any connected CW complex.

Proof. Let X be a connected CW complex. Let us construct Y, which is obtained from X by successively
attaching cells of dimensions n 42,1 + 3, - - - to kill homotopy groups 7, (X) for k > n. Then we have a
CW subcomplex X C Y, such that

e (X) — 7 (Yy) is an isomorphism if k <n
e (Yy) =0 if k>n.

Since 1x(Y,—1) = 0 for k > n, we can extend the map X — Y,,_1 to a map Y, — Y,_1 making the

as

following diagram commutative
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14 EILENBERG-MACLANE SPACE

In this way we find a tower diagram

2

Now we can replace Y, — Y7 by a fibration, and then similarly adjust Y3, Yy, - - - successively to end up with

%;{\n

2

R

- — Xn+l Xn s X2 X] = Yl

such that each X, — X,,_1 is a fibration with fiber F,. Since X;, is homotopy equivalent to Y, we have

nk(Xn) = 7'(k(X) if k<n
Te(Xn) =0 if k>n.

Then the long exact sequence of homotopy groups associated to the fibration F,, — X;, — X,,_1 implies

F, ~ K(m,(X),n).

Whitehead Tower

Whitehead Tower is a sequence of fibrations that generalize the universal covering of a space.

Theorem 14.13 (Whitehead Tower). Let X be a connected CW complex. There is a sequence of maps

- — Xyt Xy e X3 X Xo=X
where each map X, — X,,_1 is a fibration with fiber K(71,(X),n — 1). Each Xy, satisfies

e (Xn) — m(X) is an isomorphism if k > n
T (Xy) =0 if k<n.

Proof. Let Y7 ~ K(711(X), 1) be obtained from X by successively attaching cells to kill 7t (X) for k > 1. Let
j1: X C Yqand X; = F;, be the homotopy fiber. Then we have a fibration

Qy, — = X

X

Note that QY] ~ K(m1(X),0) and 71(X;) = 0. So Xj can be viewed as the universal cover of X up to
homotopy equivalence.

Similarly, assume we have constructed the Whitehead Tower up to X,,. Let Y;, ~ K(71,(X), n) be obtained
from X, by killing homotopy groups 713 (X) for k > n. Let j, : Xy C Yu. Then we define X, 11 = F;, to be
the homotopy fiber. Repeating this process, we obtain the Whitehead Tower. O
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Chain complex

Definition 15.1. Let R be a commutative ring. A chain complex over R is a sequence of R-module maps

d 0
o= Cpa : lCn#Cnfl_)"'

such that 9, 0 9,11 = 0 Vn. When R is not specified, we mean chain complex of abelian groups (i.e. R = Z).

Sometimes we just write the map by 0 and the chain complex by (C,,d). Then 9, = 9|c, and 92 = 0.

Definition 15.2. A chain map f : C, — C, between two chain complexes over R is a sequence of R-module
maps f, : C, — C}, such that the following diagram is commutative

a?’l aTl
Cnt1 i Cn Cpq —— -
fn+1 l f" \L fn—l l
Gt g 7 Gy G
This can be simply expressed as
foa=dof

Definition 15.3. We define the category Ch, (R) whose objects are chain complexes over R and morphisms

are chain maps. We simply write Ch, when R = Z.

Definition 15.4. Given a chain complex (C,, d), we define its n-cycles Z, and n-boundaries B, by
Z,=Ker(0:Cy, — Cy_1), By=Im(0:Cyi1 — Cy).
The equation 8> = 0 implies B, C Z,. We define the n-th homology group by

 Zy _ ker(oy)
Hn(C.,a) = Bii,l = m .

A chain complex C, is called acyclic or exact if H, (C,) = 0 for any n.

Proposition 15.5. The n-th homology group defines a functor
H, : Che — Ab.

Proof. We only need to check any f: Co — C, induces a group homomorphism
fv: Hu(Co) — Hy(C).
This is because

o ifa € Z,(C,), then f(a) € Z,(C,);
e ifa € B,(C,), then f(a) € B,(C)).

Definition 15.6. A chain map f : Co — D, is called a quasi-isomorphism if
f« :Hy(Co) — Hy (Do)

is an isomorphism for all n.
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Definition 15.7. A chain homotopy f 2 ¢ between two chain maps f,g : Co — C, is a sequence of
homomorphisms s, : C;, — C;:+1 such that f, — gn = s,-1 09, + a;H 0 sy, or simply

‘f—g:soa—i—a’os‘.

Two complexes C,, C, are called chain homotopy equivalent if there exist chain maps f : Co — C, and
h:C, — Cesuchthat fog~1land go f ~1.

Proposition 15.8. Chain homotopy defines an equivalence relation on chain maps and compatible with compositions.

In other words, chain homotopy defines an equivalence relation on Ch,. We define the quotient category

hCh = Cha / =~
Chain homotopy equivalence becomes an isomorphism in hCh,.
Proposition 15.9. Let f, g be chain homotopic chain maps. Then they induce identical map on homology groups
Hyu(f) = Ha(g) : Hu(Co) — Ha(Co).
In other words, the functor H,, factors through
H, : Che —+ hCh, — Ab.

Proof. Let f — g =s0d+ 9 os. Consider
f« — g+t Hy(Co) — Hy(CL).
Let w € C,, be a representative of a class [a] in H, (C, ). Since da = 0, we have
(f —g)(a) = (s0d+ 09 os)(a) =03" o (s(a)) € By(Cy).
So [f(«)] = [g(a)]. Hence f. = g« on homologies. O
Singular homology
Definition 15.10. We define the standard n-simplex
n
A" ={(to,  ,ta) ER" Y t; =1,t; > 0}
i=0

We let {vg, - - - , v, } denote its vertices. Here v; = (0,---,0,1,0,- - - ,0) where 1 sits at the i-th position.

(%]

- -> N

(%)

00 0o

Y U1

FIGURE 23. Standard 2-simplex A% and 3-simplex A3

97
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Definition 15.11. Let X be a topological space. A singular n-simplex in X is a continuous map o : A" — X.
For each n > 0, we define S, (X) to be the free abelian group generated by all singular n-simplexes in X

Sn<X> = @ Zo.

ceHom(A", X)

An element of S, (X) is called a singular n-chain in X.

A singular n-chain is given by a finite formal sum

- Y me
ceHom(A",X)

for m, € Z and only finitely many m,’s are nonzero. The abelian group structure is:

-7 = Z(—mg)(f

g

and
(Y meo) + (Y _myo) =Y (my + my)o.
[ g o
Definition 15.12. Given a singular n-simplex ¢ : A" — X and 0 < i < n, we define
olg . A1 5 X

to be the (n — 1)-simplex by restricting o to the i-th face of A” whose vertices are givenby {vg, vy, -+ ,;,- -+ ,vn }.
We define the boundary map

A
(%]
(%]
(L A2
(%
: > X
0o (4
s Z)l
y U1

FIGURE 24. Faces of 2-simplex A% and 3-simplex A®

d: Sn(X) — Snfl(X)

to be the abelian group homomorphism generated by

Given a subset {v;,, - - - ,v;, } of the vertices of A", we will write
ol|lvi,---,v;] orjustv;,---,v; ] (whenitis clear from the context)

for restricting ¢ to the face of A" spanned by {v;,,- - -, v; }. Then the boundary map can be expressed by

n .
a[vo,. .. ,vn] — 2(71)1[001011 . /vAi/ e ’vn]‘
i=0
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Proposition 15.13. (S.(X), ) defines a chain complex, i.e., 9> = d0d = 0.
Proof.

aoa[’UO/"'/ UO/Ull /ﬁi/"'/vn]

n
Z( D/ o, 010,05, on) + Y (=) (=1)[vg, - -+, Bj, -+, By -, 0]
<
0.

Example 15.14. Consider a 2-simplex o : A2 — X. Then
90 = [v1,v2] — [0, 02] + [v0, v1]

and
9?0 = ([va] = [01]) = ([02] = [w0]) + ([01] — [w0]) = 0.

Definition 15.15. For each n > 0, we define the n-th singular homology group of X by
| Ha(X) = Hy(S4(X),0) |

Let f : X — Y be a continuous map, which gives a chain map
Se(f) : Se(X) = Se(Y).
This defines the functor of singular chain complex
Se : Top — Ch, .
Singular homology group can be viewed as the composition of functors
Top >3 Ch. % Ab.
Proposition 15.16. Let f,g : X — Y be homotopic maps. Then
Se(f),Se(g) : Se(X) — Se(Y)
are chain homotopic. In particular, they induce identical map

Hy (f) = Ha(g) : Ha(X) — Ha(Y).

Proof. We only need to prove that for ig, i1 : X — X X I, the induced map
Se(ip), Se(i1) : Se(X) = Se(X x I)
are chain homotopic. Then their composition with the homotopy X x I — Y gives the proposition.

Let us define a homotopy
$:S5p(X) = Sy (X x I).
For ¢ : A" — X, we define (topologically)
s(@) : A" x TS X x 1.
Here we treat A" x I as a collection of (1 + 1)-simplexes as follows. Let {vy, - - - , v, } denote the vertices of
A". The vertices of A" x [ contain two copies {v, - - - ,v,} and {wy, - - - ,wy, }. Then

n .
A" x I=Y (=1)'[vo, 01, - vj, i, Wit1," - , W]
i=0
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cuts A" x I into (n 4 1)-simplexes. Its sum defines s(0) € S;,41(X X I).

ZUz uvz
1
wo : w1 wo w1 wo W1
1
1
1
1
| _
1
1 02
_A
- Y
- < S
vy L= 4! (o 01 Vo 01

FIGURE 25. Decomposition of A" x [ forn =2

The following intuitive formula holds
O(A" xI) =Axdl— (0A") x I
as an equation for singular chains. This leads to the chain homotopy

S.(il) — S.(io) =dos+so00.

O
Theorem 15.17. Singular homologies are homotopy invariants. They factor through
H; : hTop — hCh, — Ab.
Dimension Axiom
Theorem 15.18 (Dimension Axiom). If X is a contractible, then
0 n>0
H,(X) =
Z n=0
Proof. We can assume X is one point. For each n > 0, there is only one ¢, : A" — X. Therefore
S5i(X) =Z(0y) .
The boundary operator is
1 ‘ 0 n = odd
3(on) =} (1) {ow-1) =
i=0 Oy—1 N =even.
The singular chain complex of X becomes
1 0 1
=222 —Z—0
which implies the theorem. O
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Some Algebraic tools
We collect several useful propositions in dealing with chain complexes. The proofs are left to the readers.

Proposition 15.19 (Five Lemma). Consider the commutative diagram of abelian groups with exact rows

Ay Ay A Ay As
lfl lfz lf3 if4 l}%
B, B, B, B, Bs

Then

1°. If f, fa are surjective and fs is injective, then f3 is surjective.
2°. If fa, fa are injective and f is surjective, then fs is injective.
3°. If f1, fa, fa, f5 are isomorphisms, then f3 is an isomorphism.

Definition 15.20. Let f : (Co,d) — (C,,d’) be a chain map. The mapping cone of f is the chain complex
cone(f)n = Cu1® Cy,
with the differential
@ cone(f)u — cone(flu1, (ca-1,6p) = (=3(c-1),3'(ch) — Flen1)).
Proposition 15.21. Let f : (Co,0) — (C.,d") be a chain map.
1°. There is an exact sequence
0 — C, — cone(f)e — C[—1]e — 0

Here C[—1], is the chain complex with C[—1], := C,,_1 and differential —0 where 0 is the differential in C.
2°. f is a quasi-isomorphism if and only if cone(f ). is acyclic.
3°. Let j: Cy < cone(f)e be the embedding above. Then cone(j)e is chain homotopic equivalent to C[—1]a.

In homological algebra, a chain map f : (C.,9d) — (C,,d’) leads to a triangle

cone(f)e

Here the dotted arrow is a chain map from cone(f). to the shifted one C[—1]..

The above proposition says C[—1]s can be identified with cone(j) (up to chain homotopy). So we can
rotate the above triangle and still get another triangle

This is closely related to the cofiber exact sequence. cone(f)s is the analogue of homotopy cofiber of f.
C.o[—1] is the analogue of the suspension. Then the above triangle structure can be viewed as

Ce 4, C. — cone(f)e — Co[—1] f[;l] Co— -
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Exact homology sequence

Definition 16.1. Chain maps 0 — C, dcoh C.J — 0is called a short exact sequence if for each n
0-C, Sc, b —o

is an exact sequence of abelian groups.

We have the following commuting diagram

i P
0 —>Chy —>Cuna Cin 0
9 ) 9"
p
0 C, ——C, c/ 0
9 ) 9"
i p
0——=C | —=Cyy c’ 0
9 2] a"

Lemma/Definition 16.2. Let0 — C, e b CJ — 0beashort exact sequence. There is a natural homomorphism
8 : Hu(CJ) = Hy-1(CJ)
called the connecting map. It induces a long exact sequence of abelian groups
o Ha(€L) % H(Co) B Ha(CY) 5 Hyoa(CL) ™ Hya(Co) B Hyoa(CU) = -+

The connecting map & is natural in the sense that a commutative diagram of complexes with exact rows

0 Cl Ce (o4 0
0 D) D, D/ 0

induces a commutative diagram of abelian groups with exact rows

D Hy(CY) ——= Hy(Ca) ——= Hy(C) —2= Hy_1(Cl) — -+

U |

.~ Hy(D!) — > Hy(Ds) —— Hy(D!) —*~ H, (D)) —— ---

Proof. We first describe the construction of 6. Given a class [a] € H,(C]), let « € C)/ be a representative.
Since C, — C) is surjective, we can find f € C, such that p(B) = «. Consider 9p. Since

p(9B) = 9(p(B)) = ox =0,

there exists a unique element in y € C/,_; such that i(y) = 9p. Since

i(3(7)) = a(i(7)) = 0*(B) =0
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and i is injective, we find d(vy) = 0. This is illustrated by chasing the following diagram

p—u

|

— > B—>0

=<2

7 defines a class [y] € H,_1(C,). We next show that this class does not depend on the choice of the
lifting B and the choice of the representative a.

e Choice of B. Suppose we choose another f3 such that p() = a. Then there exists x € C}, such that

B=pB+i(x).

It follows that ¥ = y + 9x, so [¥] = [7].
e Choice of a. Suppose we choose another representative & = a + dx of the class []. We can choose a
lifting B = B + dy of & where p(y) = x. Since 9 = 9f, we have ¥ = .

Therefore we have a well-defined map 6 : H,(C,) — H,,—1(C,) by

We next show the exactness of the sequence
co = Hy(CL) 5 Hy(Co) B Ha(C) 5 Hy1(CL) 2 Hy 1(Co) 55 Hy 1 (CL) — -

e Exactness at H, (C,).
im(ix) C ker(px) is obvious. If [a] € H,(C,) such that [p(a)] = 0, so p(a) = dx. Lety € C,,41 be
a lifting of x so p(y) = x. Since p(a — dy) = 0, « — dy = i(p) for some B € C;,. Then 9 = 0 and

i«([B]) = [«] which implies ker(ps) C im(iy).

e Exactness at H, (C)).
Assume [a] = p«[B], then B is a lift of « and 98 = 0. So 5[] = 0. This shows

im(p«) C ker(9).
On the other hand, if §[a] = 0. We can find a lift 8 of a such that 9 = 0. Then [a] = p.[B]. Hence
ker(d) C im(p«).

e Exactness at H, 1(C)).
ix6([a]) = ix[y] = [0B] = 0. This shows

imd C keri,.
Assume [y] € H,_1(C,) such that i,[y] = 0. Then i(y) = 0B for some B. Let « = p(B). Then
d(a) =dp(B) = p(9p) = pi(y) = 0.
So [«] defines a homology class and d[a] = [y] by construction. This shows
keri, C imJd.

The naturality is straight-forward to verify. O
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Relative homology

Definition 16.3. Let A C X be a subspace. It indues a natural injective chain map S¢(A) — S¢(X). We
define the singular chain complex of X relative to A to be

Sn(X,A) :=5,(X)/Sn(A)
with the induced differential. Its homology H, (X, A) := H,(S«(X, A)) is called the n-th relative homology.
Theorem 16.4. For A C X, there is a long exact sequence of abelian groups

S Hu(A) = Ha(X) = Ha (X, A) S Hy 1 (A) — -+

Proof. This follows from the short exact sequence of complexes

0 — Se(A) = Se(X) = So(X,A) = 0.

Let us define relative n-cycles Z, (X, A) and relative n-boundaries B, (X, A) to be

Zu(X,A) = {7 € S,(X): 97 € S,_1(A)}
Bu(X,A) = By(X) + Su(A) C Sp(X).

_____
-

FIGURE 26. A chain v in Z,(X, A) with two simplexes. The green face lies outside A but
cancelled out from the two simplexes. So 9y C A holds.

Then it is easy to check that S,,(A) C By(X,A) C Z,(X,A) C Sy(X) and
H,(X,A) = Zy(X,A)/Bu(X, A).

Two relative n-cycles 1, 7, defines the same class [y1] = [72] in H, (X, A) if and only if 7 — 1y, is homolo-
gous to a chain in A.

The connecting map
d:Hu(X,A) - H,_1(A)

can be understood as follows: a n-cycle in H, (X, A) is represented by an n-chain v € S,(X) such that its
boundary d(vy) lies in A. Viewing d(vy) as an (n — 1)-cycle in A, then
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o =B+ 71— 72, B € Se(A)
= [n] =[] €Hi(X A)

FIGURE 27. Relative n-cycles

Let f : (X, A) — (Y, B) be amap of pairs. It naturally induces a commutative diagram

0 Se(A) Se(X) —= Su(X,A) —>0
0 Se(B) Se(Y) —= S4(Y,B) —= 0

which further induces compatible maps on various homology groups

s Hy(A) — = Hy(X) ——= Hy (X, A) —2> Hy 1 (A) —= - -

| Bahea |

> Hy(B) —— Hy(Y) ——> Hy(Y, B) > H, 1 (B) —> - -
This construction can be generalized to the triple B C A C X.
Theorem 16.5. If B C A C X are subspaces, then there is a long exact sequence
.-+ = Hy(A,B) = Hu(X,B) = Hu(X, A) 2 Hy_1(A,B) = - -

Proof. This follows from the long exact sequence associated to the exact sequence

Se(A)  Se(X)  Su(X)
S«(B) ' S.(B)  S.(A)

0— — 0.

Theorem 16.6 (Homotopy Axiom for Pairs). If f,¢: (X, A) — (Y, B) and f is homotopic to g rel A. Then
Hy(f) = Hu(g) : Hu(X, A) = Hu(Y, B).

Reduced homology
Proposition 16.7. Let { X, } be path connected components of X, then
H,(X) = PHu(Xa).
u
105



16 EXACT HOMOLOGY SEQUENCE

Proof. This is because

Se(X) = P Se(Xa)-

Proposition 16.8. Let X be path connected. Then Hy(X) = Z.

Proof. Hyo(X) = So(X)/0S1(X). Let us define the map

€:50(X) = Z, Y myp—)_ mp.
peX P

The map € is zero on 951 (X). On the other hand, assume € (¥, x mpp) = 0, then we can write

Y mpp =Y (pi—ai)

reX i
into pairs. Since X is path connected, we can find a path 7; : I — X such that 0y = p; — g;. Therefore
Ypex mpp = Y;07i € 951(X). It follows that € induces an isomorphism

e:Hy(X)=Z

In general, we have a surjective map

e:Ho(X) =2, Y mpp—) mp.
peX 14

Definition 16.9. We define the reduced homology group of X by

F1,(X) — H,(X) n>0
T N ker(Hy(X) »Z) n=0

We can think about the reduced homology group as the homology group of the chain complex
s = 5(X) = 51(X) = So(X) — Z.
The long exact sequence still holds for the reduced case
s H(A) = F(X) = Ha(X,A) S Hy g (A) = -
Example 16.10. If X is contractible, then H, (X) = 0 for all n.

Example 16.11. Let xo € X be a point. Using the long exact sequence for A = {x¢} C X, we find
H, (X, x0) = Hy(X).
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The fundamental property of homology which makes it computable is excision.

Barycentric Subdivision

Definition 17.1. Let A" be the standard n-simplex with vertices vy, - - - , v,. We define its barycenter to be

1 n
C(An) - m ZZ)Z c An.
i=0

Definition 17.2. We define the barycentric subdivision ZA" of a n-simplex A" as follows:

1°.
2°.

BN = AV,

Let Fy, - - -, F, be the n-simplexes of faces of A" "1, ¢ be the barycenter of A"*1. Then A" *! consists
of (n + 1)-simplexes with ordered vertices [c,wy, - - - ,w,] where [wy, - -+ ,wy,] is a n-simplexes in

BFy, -+, BF,.

Equivalently, a simplex in A" is indexed by a sequence {Sy C S;--- C S, = A"} where S; is a face of
Si11. Then its vertices are [c(Sy),c(Sy—1), -+ ,c(Sp)]. Itis seen that A" is the union of simplexes in ZA".

0]

wa w1

01 : (%)
wo

FIGURE 28. #A? = [c,wo, v3] — [c, w1, v2] + [c,w1,v0] — [c, wp, vo] + [c, wa, v1] — [c, wo, v1]

£
1,’!{ VN f‘.\\
iz SN

R =
AT

FIGURE 30. Barycentric Subdivision ZA3
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Definition 17.3. We define the n-chain of barycentric subdivision %, by
By =Y F0o, € Su(A")
o
where the summation is over all sequence « = {Sp C S1--- C S, = A"}. 0, is the simplex with ordered

vertices [¢(Sn), c(Su—1), -+ ,c(Sp)], viewed as a singular n-chain in A”. The sign + is about orientation: if
the orientation of [¢(Sy),¢(S,,_1),- - - ,c(So)] coincides with that of A", we take +; otherwise we take —.

Definition 17.4. We define the following composition map
Se(A™) x Sy (AF) = S, (A™), oxy— ooy
This is defined on generators via the composition A" — A¥ — A™ and extended linearly to singular chains.
Similarly, there is a natural map denoted by

Su(A™) 1Sy (X) = Sp(X), n:0o—n*(0):=0coy
where 7*(0) = o o 17 is the composition of o with 7. It is easy to see that

(r10m2)" =13 015, ¥ € Sp(A™),12 € Sp(AF).
Example 17.5. Let

A" = i(—l)ia(i)A” € Sy_1(A")

be the boundary faces. Then (dA") o (E)A”_ll) 0: 0. The operator

B = (A7) 1 Su(X) = Sy (x)

defines the boundary map in singular chains.

Lemma 17.6. The barycentric subdivision is compatible with the boundary map
0%, = HB(0A")

where B(0A") is the barycentric subdivision of faces 0A™ of A", viewed as an (n — 1)-chain in A". Equivalently, we
have the following composition relation

By 0 (IA") = (3A™) 0 Byy_1.

Proof. The choice of ordering and orientation implies 0%, = Z(0A"). Here is an illustration for n = 2.

0]

wo w1

(%] : (%)
wo

BN = [c,wp,va] — [c, w1, 2] + [c, w1, v0] — [c, wa, Vo] + [c, wa,v1] — [c, wo,v1]. So
IBN =([c, wo] — [c, 2] + [wo, va]) — ([, w1] — [¢, v2] + [w1, v2]) + ([c,w1] — [c, vo] + [w1, v0))
— ([e,w2] = [c, v0] + [w2, vo]) + ([c, w2] — ¢, v1] + [w2, v1]) — ([c, wo] — [¢, v1] + [wo, v1])

=([wo, v2] — [wo, v1]) — ([w1,v2] — [w1,v0]) + ([wa, v1] — [w2, vo]) = B(IN?).
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Lemma 17.7. There exists T, 11 € Sy11(A") for all n > 0 such that
By —Ipn = Tyyq 0 0A"™ M +0A" 0 T,

Here 1pn : A" — A" is the identity map, viewed as a n-chain in S, (A").

Proof. We construct T, inductively. T; = 0. Suppose we have found T},. We need to find T, such that
(Tys1) = By — 1pan —0A" o T),.
Using Lemma 17.6, we have
0 (HBn —1pan —0A" o Tyy) = (HBp — 1pan — 0A" o Ty;) 0 dA"
—0A" o (By_1 — 1pn1 — T, 0 IA")
=9A"0dA" 1o T, 1 =0.
Therefore %, — 1pn — 0A" o Ty, is a n-cycle in S,,(A"). However
H,(A") =0, Vn>1

since A" is contractible. So &, — 1pn — dA" o Ty, is a n-boundary and T},;1 can be constructed.

Definition 17.8. We define the barycentric subdivision on singular chain complex by
B Se(X) = Se(X)
where #* = % on S, (X).
Theorem 17.9. The barycentric subdivision map B* : Se(X) — Se(X) is a chain map. Moreover, it is chain

homotopic to the identity map, hence a quasi-isomorphism.

Proof. Lemma 17.6 implies %* is a chain map. It is chain homotopic to the identity map by Lemma 17.7. O

Excision

Theorem 17.10 (Excision). Let U C A C X be subspaces such that U C A° (the interior of A). Then the inclusion
i:(X—UA-U) — (X,A) induces isomorphisms

i :Hy(X —U,A—U) 2H,(X,A), Vn.

Proof. Letuscall o : A" — X small if
oc(A")C A or o(A")CX—-U.

Let S,(X) C Se(X) denote the subcomplex generated by small simplexes. The condition U C A° implies
that for any simplex ¢ : A" — X, there exists a big enough k such that

(#")(0) € §'(X).

Let S, (X, A) be defined by the exact sequence
0— Se(A) = S'(X) = S'(X,A) — 0.

It is easy to see that

SL(X,A) =S (X —U,A—U).
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There is a natural commutative diagram of chain maps

0 Se(A) SL(X) —= SL(X,A) —=0
0 Se(A) Se(X) — So(X,A) —=0

is a quasi-isomorphism.
e injectivity of H(S, (X)) — H(S«(X)).
Let a be a cycle in S, (X) and a = 9 for B € S¢(X). Take k big enough that (%*)*(8) € §'(X). Then
(#") (a) = 9(%") (B)-
Hence the class of (%*)¥(«) in H(S, (X)) is zero, so is « which is homologous to (%*)*(a).
e surjectivity of H(S, (X)) — H(S«(X)).

Let & be a cycle in So(X). Take k big enough that (%*)*(a) € S,(X). Then (%*)*(a) is a small cycle
which is homologous to «. O

Theorem 17.11. Let X1, X5 be subspaces of X and X = X7 U X3. Then
H, (Xl, X110 Xz) — He (X, Xz)

is an isomorphism for all n.

Proof. Apply Excisionto U = X — X1, A = X».
O

Theorem 17.12 (Mayer-Vietoris). Let X1, X5 be subspaces of X and X = X7 U X3. Then there is an exact sequence

(il*/iZ*)

o= Ha (X N X)) Y Hy(Xq) @ Ha(Xo) 5 Hi(X) 2 H, 1(XinXp) = -

It is also true for the reduced homology.

Proof. Let So(X71) 4 Se(X2) C Se(X) be the subspace spanned by Se(X7) and Se(X3).
We have a short exact sequence
(i1/2) i=J2
0— S.(Xl N Xz) — S.(Xl) D S.(Xz) — S.(Xl) + S.(Xz) — 0.

Similar to the proof of Excision via barycentric subdivision, the embedding Se(X7) 4+ Se(X2) C Se(X) isa
quasi-isomorphism. Mayer-Vietoris sequence follows. 0

Theorem 17.13. Let A C X be a closed subspace. Assume A is a strong deformation retract of a neighborhood in X.
Then the map (X, A) — (X/A, A/ A) induces an isomorphism

Ho(X, A) = FL.(X/A).

Proof. Let U be an open neighborhood of A that deformation retracts to A. Then Hq (A) = H,(U), hence

H.(X, A) = Hd (X, U)
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by Five Lemma. Since A is closed and U is open, we can apply Excision to find
Ho(X,A) = Ho(X,U) =Ho (X — A, U— A).
The same consideration applied to (X/A, A/A) and U/ A gives

Ho(X/A,AJA) 2 Hy(X/A—A/AU/A—A/A) =Ho (X — A U — A).

g
This Theorem in particular applies to cofibrations.
Corollary 17.14. Let A C X be a closed cofibration. Then He (X, A) = He(X/A).
Suspension
Let (X, x9) be a well-pointed space. Recall that its reduced cone C, X and reduced suspension XX are
X x1I X x1I
X=XAI= YX=XAS = )
& M= X0t om < 1) NS = XX 0JUX x (1 Uxg x 1)
Since (X, xg) is a well-pointed, we have homotopy equivalences
XxI XxI
CeX>~—0—Fr—, EX~ .
* X x {0}’ (X x {0} UX x {1})
Theorem 17.15. Let (X, xo) be a well-pointed space. Then H,(£X) = H,,_1(X).
Proof. Let
X x1I X x1I
Z = — Y = - Z X.
Xx {0} YT xxuxxqay -2
Since Z is contractible, the homology exact sequence associated to the pair X C Z implies
H,(Z,X) =H,_1(X).
It follows that
H,(ZX) = H,(Y) = H,(Z2/X) = Hy(Z,X) = H,_1(X).
(]
Proposition 17.16. The reduced homology of the sphere S" is given by
. Z k=n
H(8") =
0 k#n
In particular, spheres of different dimensions are not homotopy equivalent.
Proof. This follows from the previous theorem and S” = £""S? where S? = {41} consists of two points.
g
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Applications of Homology of spheres

Proposition 17.17. If m # n, then R™ and R" are not homeomorphic.

Proof. Assume f : R™ — R" is a homeomorphism. Then f induces a homeomorphism

R™ —{p} = R" = {f(p)}

hence a homotopy equivalence between S”~! and S"~!. Contradiction. O
Definition 17.18. A continous map f : S" — S" (n > 0) has degree d, denoted by deg(f) = d, if
foiFa(S") = Z > Ay (S") = Z
is multiplication by d.
We give a geometric interpretation of the degree of f : S” — S". Let V C S" be a small open ball such
that f~1(V) — V is a disjoint union of open balls
fFlvy=uu---uuy.

Let f; : U;/0U; =2 S" — V /9V =2 §". We have the commutative diagram

Hy(8") —— Hap(8"/(S" — Uill;)) = @; Ha(S")

J{f* i&‘(ﬁ)*
H, (58") —— H,(5"/(5" —V)) = H,(S")

It is easy to see that first row is k — (k, k, - - - , k) and the second row is k — k. It follows that
d
deg(f) =) _ deg(f).
i=1

Note that when f~1(V) — V is a covering map, then f : U; — V is a homeomorphism. We have
deg(f;) = £1 and deg( f) is given by a counting with signs.

Example 17.19. Identify $> = C U {co}. Consider the map f : S — S?,z — zk. Then deg(f) = k.

Lemma 17.20. Let f,g : S™ — S" be continuous maps.

1°. deg(f og) = deg(f) deg(g).
2°. If f ~ g are homotopic, then deg(f) = deg(g)

3°. If f is a homotopy equivalence, then deg(f) = £1.

Proof. All the statements follow from the fact that H,, defines a functor H,, : hTop — Group.

Proposition 17.21. Letr : S" — S", (xo,- -+ ,xn) — (—X0, X1, -+ , Xp) be the reflection. Then
deg(r) = —1.
Proof. We prove by induction on 7. This is true for n = 0. Assume the case for n — 1.
Consider the pair (D", S"~!). We find an isomorphism H,(5") — H, _1(S""1) by
T1,(S") = [,(D"/S"1) = H,(D", 5" 1) 5 1,1 (5" ).

This isomorphism is compatible with the reflection and leads to the commutative diagram
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FI, (S") —2> H, 1 (S"1)

Hy (") —= H, 1 (8"

This proves the case for n.

Corollary 17.22. Let o : S — S", (xo, -+ ,Xn) — (—Xo, -+ , —Xn) be the antipodal map. Then
deg(o) = (—=1)"*".
Proof. o is a composition of n + 1 reflections. O

Proposition 17.23. If f : S* — S" has no fixed points. Then f is homotopic to the antipodal map.

Proof. Let o be the antipodal map. Then the map

. ) (1= bo(x) +tf(x)
FiStxl= 8% Pt = m oo T ]

gives the required homotopy. O

Theorem 17.24 (Hairy Ball Theorem). S" has a nowhere vanishing tangent vector field if and only if n is odd.

Proof. If n is odd, we construct

U(xol' e ,xn) 5 (—xl/xo/ —X3,X2," )-

Conversely, assume v is no-where vanishing vector field. Let

f:8"=85", x— o(x) .
The map
F:5"x1—S", F(x,t)=cos(mt)x+ sin(rt)f(x)
defines a homotopy between the identity map 1 and the antipodal map o. It follows that
deg(c) =1 = n = odd.

Theorem 17.25 (Brower’s Fixed Point Theorem). Any continuous map f : D" — D" has a fixed point.

Proof. Assume f has no fixed point. Define
r:D" —s"!

where r(p) is the intersection of 0D" with the ray starting from f(p) pointing toward p. Then r defines a
retract of $"~1 < D". This implies He(D") = He(S" ') @ Ho (D", S"~1). Contradiction.

]
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Cellular homology
Lemma 18.1. Let {(X;, x;) }ic be well-pointed spaces. Then

H,(\/ X;) = P H.(X)
iel iel
Proof. Let

Y:I_Ixi/ A:H{xl}
iel iel
A C Y is a cofibration, therefore
H,(\/ X;) = H,(Y/A) =H, (Y, A) = PH. (X, x;) = P Hu(X;)
iel iel i€l

Definition 18.2. Let (X, A) be a relative CW complex with skeletons: A = X! ¢ X C

We define the relative cellular chain complex (C$ (X, A), )
— (X, A) 5 c (X, A) S = (X, A) =0

where
Cel(X, A) := Hy(X", X" 1)

and the boundary map 9 is defined by the commutative diagram

H(xnxnl nlxnlxn2)

\/

annlA

-C X" C

Here  is the connecting map of relative homology for A C X"~! C X" and j is the natural map.

Assume X" is obtained from X"~! by attaching n-cells indexed by J,

H Snfl f anl

&€ Jn

L.

[[ D" ——= X"

a€EJp

Since X"~ 1 < X" is a cofibration, Lemma 18.1 implies that

cell(x, A) = H, (X" /X" 1) @Hn (sH=Ppz
]}1

is the free abelian group generated by each attached H,, (D", S"’l) = H,(S"). Using the diagram

nl

H(xnxnl anxn2

annlA n1Xn2A

n2xn2xn3)
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and d,,_1 o j, = 0, we see that
01100y = Ju-106;,-10jn 0y =0.
Therefore (C"' (X, A),9) indeed defines a chain complex.

Definition 18.3. Let (X, A) be a relative CW complex. We define its n-th relative cellular homology by

HE (X, A) == H, (CS(X, A),9) |

When A = @, we simply denote it by HS(X) called the n-th cellular homology.

Lemma 18.4. Let (X, A) be a relative CW complex. Let 0 < q < p < oo. Then
H,(X?,X7) =0, if n<g or n>p.

Proof. Consider the cofibrations
XT ey XTH ey ey XP1 ey XP
where each quotient is a wedge of spheres

X1+ /X1 = \/5q+1, X972/ xatt — \/Sq+2, s, XP/XP1 = \/Sp.

Assume n < gorn > p. Then
H, (X971, X7) = H,(X9+2, X7H1) = ... = H,(X?,XP~1) = 0.
Consider the triple X1 < X7+1 < X972, The exact sequence
H, (X911, XT) — H, (X772, X7) — H, (X912, X7

implies H,(X7%2,X7) = 0. The same argument applying to the triple X7 — X972 < X7+3 implies
H, (X973, X7) = 0. Repeating this process until arriving at X7 < XP~1 < X7, we find H, (X?,X1) = 0. O

Theorem 18.5. Let (X, A) be a relative CW complex. Then the cellular homology coincides with the singular homol-

ogy
H (X, A) = Hy (X, A).

Proof. Consider the following commutative diagram

H,, 1 (X", X1) H, (X2, A)(= 0)

&

H, (X" 1,A)(=0) —— H,(X",A) ——— H, (X", X" 1) ———=H, (X"}, A)

.

Hn(Xn+1,A) Hn71(X”_1,X"_2)

H, (X", X") (= 0) H, 1(X"2,A)(=0)
Diagram chasing implies
H, (X", A) 2 HY (X, A).
Theorem follows from the exact sequence

H, 1 (X, X" (=0) = H, (X", A) = H, (X, A) = H, (X, X" (= 0)
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O

Let f : (X, A) — (Y, B) be a cellular map. It induces a map on cellular homology
£ HE (X, A) — HEU (Y, B).

Therefore in the category of CW complexes, we can work entirely with cellular homology which is combi-
natorially easier to compute as we discuss next.

Cellular Boundary Formula

Let us now analyze cellular differential
Oy Hy (X", X" 1) - H,_ (X", X"72),
For each n-cell e}, we have the gluing map
for 1S xL

This defines a map
]Eeﬁ :Snfl N anl/Xn72 _ \/ Snfl
]nfl

which induces a degree map

(feﬁ)* : anl(snil) =7 — @I:Infl(snil) = EBZ
In—l ]nfl
Collecting all n-cells, this generates the degree map
d.:PZ—- Pz

Jn ]n—l

Theorem 18.6. Under the identification CSM (X", X" 1) = @ Z, cellular differential coincides with the degree map
]1’1

On = dy.

Proof. This follows from chasing the definition of the connecting map 9, : H, (X", X"~1) — H,_1 (X"~ 1, X"~2).
|

Example 18.7. CIP" has a CW structure with a single 2m-cell for each m < n. Since there is no odd dim
cells, the degree map 4 = 0. We find

Z k=02---,2n

0 otherwise

Hy (CP") = {

Example 18.8. A closed oriented surface X, of genus ¢ has a CW structure with a 0-cell ¢y, 2g 1-cells
{alr bll cery, ag, bg}, and a Z'Cell €.

In the cell complex
Zey g @Zﬂi S¥ @Zbi g Zeg.
i i
the degree map d, sends
e — Z(ai"'bi_ai_bi) =0
i
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N

FIGURE 31. The CW structure of a closed oriented surface X of genus g = 2

so dy = 0. Similarly, d; is also 0. We find

Z k=0
H(zg) = | 2 k=1
Z k=2
0 k> 2.

Example 18.9. RP" = §" /Z; has a CW structure with a k-cell for each 0 < k < n.

RP? — RP! — ... < RP"! < RP".

n
ey

RP" e' and e” are identified under Z,

We have the cell oomplex
zM7z" 7. Ay
The degree map d : F;_1(S*™1) — Hy_1(S¥1) is
dr = 1 + deg(antipodal map) = 1+ (—1)*.
So the cell complex becomes

Az%7227%7

It follows that
Z k=0
Z/2Z 0<k<nkodd
Hy(RP") =< Z k=n=odd
0 k=mn = even
0 k>n
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Euler characteristic

Definition 18.10. Let X be a finite CW complex of dimension n and denote by c; the number of i-cells of X.
The Euler characteristic of X is defined as:

x(X) =Y (—-1)c;.

i
Recall that any finitely generaed abelian group G is decomposed into a free part and a torsion part
C=2Z'OZ/MmZS - OZ/m.
The integer r := rk(G) is called the rank of G.

Lemma 18.11. Let (G, 0) be a chain complex of finitely generaed abelian groups such that G, = 0 if |n| >> 0.
Then

Y (=1)'1k(G;) = } (= 1) tk(H;(Ga)).

i i
Proof. We consider the chain complex (GP, d) where
GP = GrezQ=QX%.

Each G,? is now a vector space over the field Q, and 0 is a linear map. Moreover

H,(GQ) — QUk(Hi(Ge)).
The lemma follows from the corresponding statement for linear maps on vector spaces. O
Theorem 18.12. Let X be a finite CW complex. Then

X(X) = Y (-1)'5(X)

i
where b;j(X) := rk(H;(X)) is called the i-th Betti number of X In particular, x (X) is independent of the chosen CW
structure on X and only depend on the cellular homotopy class of X.

Proof. This follows from Lemma 18.11 and the fact that the homologies of celluar complex compute the
singular homologies. x(X) does not dependent of the chosen CW structure on X since H;(X)’s donot. [

Example 18.13. x(S") =1+ (—1)".

Example 18.14. Let X be the tetrahedron and Y be the cube. They give two different CW structures on S?,
hence two different counts of the Euler characteristic.

o~

Ooooood =
X d Y

FIGURE 32. The CW structures of sphere S?

112

x(X)=4—-6+4=2, x(Y)=8-12+4+6=2.
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R refers to a commutative ring in this section.
Cohomology
Definition 19.1. A cochain complex over R is a sequence of R-module maps
oot gt on dy on1

such that d,, od,,_; = 0. When R is not specified, we mean cochain complex of abelian groups (i.e. R = Z).

Sometimes we just write the map by d and the cochain complex by (C*®,d). Then
dy =d|c, and d*=0.
Definition 19.2. Given a cochain complex (C*,d), its n-cocycles Z" and n-coboundaries B" are
7" =Ker(d : C" — C"*1), B"=1Im(d:C" ! = C").
d? = 0 implies B" C Z". We define the n-th cohomology group by

z" ker(d,)
n ] . _
H'(C ) = 5o = nia

A cochain complex C* is called acyclic or exact if H" (C*) = 0 for all n.
We are interested in the following relation between cochain and chain complex.

Definition 19.3. Let (c.,a) be a chain complex over R, and G be a R-module. We define its dual cochain
complex (C*,d) = Homg(C,, G) by

-+-Hompg(C,_1,G) = Homg(C,, G) = Homg(C,11,G) — - -+
Here given f € Homg(C,, G), we define d,, f € Homg(C,11, G) by
dnf(c) := f(ny1(c)), Ve & Cupa.

Definition 19.4. Let G be an abelian group and X be a topological space. For n > 0, we define the group of
singular n-cochains in X with coefficient in G to be

S§"(X;G) := Hom(S,(X), G).

The dual cochain complex S°*(X; G) = Hom(S.(X), G) is called the singular cochain complex with coeffi-
cient in G. Its cohomology is called the singular cohomology and denoted by

H"(X;G) := H"(S*(X; G)).
When G = Z, we simply write it as H" (X).
We have the analogue of chain homotopy between cochain complexes. We leave the details to the read-

ers. Proposition 15.16 holds for singular cochains as well.
Theorem 19.5. H" (—; G) defines a contra-variant functor

H"(—;G) : hTop — Ab.
Theorem 19.6 (Dimension Axiom). If X is contractible, then
G n=0

H"(X;G) =
0 n>0
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The proof is similar to Theorem 15.18.

Lemma 19.7. Let G be a R-module and 0 — Ay — Ay — Az — 0 be an exact sequence of R-modules. Then the
following sequence is exact

0 — Hompg (A3, G) — HOIIIR(AQ, G) — HomR(Al, G)
If As is a free R-module (or more generally projective R-module), then the last morphism is also surjective.

Definition 19.8. Let G be an abelian group. Let A C X be a subspace. We define the relative singular
cochain complex with coefficient in G by

S5%(X,A;G) := Hom(S«(X)/Se(A),G).
Its cohomology is called the relative singular cohomology, denoted by H* (X, A; G).

Since Se¢(X)/Se(A) is a free abelian group, we have a short exact sequence of cochain complex
0—5*(X,A,G) = S*(X;G) - S*(A;,G) =0
which induces a long exact sequence of cohomology groups
0— HX,A;G) — H'(X;G) — H(A;G) — HY(X,A;G) — -+ .
Moreover, the connecting maps
§:H"(A,G) = H"'(X, A; G)
is natural in the same sense as that for homology.

Excision and Mayer-Vietoris sequence for cohomology are proved similarly as homology.

Theorem 19.9 (Excision). Let U C A C X be subspaces such that U C A° (the interior of A). Then the inclusion
i:(X—UA-U) — (X,A) induces isomorphisms

i HY(X,A,G)=2H"(X-UA-U;G), Vn
Theorem 19.10 (Mayer-Vietoris). Let X1, X5 be subspaces of X and X = X7 U X3. Then there is an exact sequence
co = HY(X;G)— H"(X1;G) @ H" (X2, G)— H (X1 N X2, G) = H" (X, G) — - -

Universal Coefficient Theorem for Cohomology
Definition 19.11. Let M, N be two R-modules. Let P, — M be a free R-module resolution of M:
Py —=Py 1 —=---PP=>P—-M—=0
is an exact sequence of R-modules and P;’s are free. We define the Ext group
Extk (M, N) = H*(Hom(P,, N))
and the Tor group
TorR (M, N) = H(Ps ®g N).
Note that
Ext) (M, N) = Homg(M,N), Tor{(M,N)= M @g N.
Ext and Tor are called the derived functors of Hom and ®. It is a classical result in homological algebra

that Extk (M, N) and TorR (M, N) don’t depend on the choice of resolutions of M. They are functorial with
respect to both variables and TorX is symmetric in two variables

TorR (M, N) = Torf (N, M).
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Moreover, for any short exact sequence of R-modules
0— My — My, — Mz — 0,
there are associated long exact sequences
0 — Homg (M3, N) — Homg (M, N) — Homg(M;, N)
— Exth(Ms, N) — Exth(My, N) — Extk(M;, N)
— Extg(Ms, N)) — Extg (M, N) = Extz (M, N) — - -

and
0 — Homg (N, M;) — Homg (N, M) — Hompg (N, M3)
— Extk (N, My) — Extk(N, Mp) — Extk(N, M3)
— Ext3(N, M;)) — Ext3(N, Mp) — Ext4(N, M3) — - - -
and

-« — Tor¥(My, N) — TorX (M, N) — Tor{ (M3, N)
— TorX (My, N) — Tork (M, N) — Tork (M3, N)
— My QR N = My @ N = M3 @r N — 0
Now we focus on the case of abelian groups R = Z. For any abelian group M, let Py be a free abelian
group such that Py — M is surjective. Let P; be its kernel. Then P, is also free and
0—-P—>P—M—0
defines a free resolution of abelian groups. This implies that
Ext!(M,N) =0, Tory(M,N)=0 for k>2.

For abelian groups we will simply write

Ext(M, N) := Ext,(M.N), Tor(M,N) := Tor?(M,N) |.

Lemma 19.12. If either M is free or N is divisible, then Ext(M, N) = 0.

Proposition 19.13. Let (C,,0) be a chain complex of free abelian groups, then there exists a split exact sequence
0 — Ext(H,,_1,G) —» H"(Hom(C,., G)) — Hom(H,,G) — 0

which induces isomorphisms

H"(Hom(C,, G)) = Hom(H,(C,), G) ® Ext(H,_1(Cs), G)

Proof. Let B, be n-boundaries and Z;, be n-cycles, which are both free. We have exact sequences
0—»B,—+72,—-H,—-0, 0—-Z2,—-C,—B,,_1—0.
This implies exact sequences
0 - Hom(H,, G) — Hom(Z,, G) — Hom(B,, G) — Ext(H,,G) — 0
and the split exact sequence

0 — Hom(B,,_1,G) — Hom(C,, G) — Hom(Z,,G) — 0.
121



19 COHOMOLOGY AND UNIVERSAL COEFFICIENT THEOREM

Consider the commutative diagram with exact columns

0 0

|

Hom(Z,_1,G) —— Hom(B,,_1,G) —— Ext(H;_1, G)

|

Hom(C,_1,G) — Hom(C,;, G) — Hom(C,,1,G)

|

Hom(H,, G) Hom(Z,, G) Hom(By, G)
0 0

Diagram chasing shows this implies a short exact sequence
0 — Ext(H,_1,G) —» H"(Hom(C,., G)) — Hom(H,,G) — 0
which is also split due to the split of the middle column in the above diagram. O

Theorem 19.14 (Universal Coefficient Theorem for Cohomology). Let G be an abelian group and X be a topo-
logical space. Then for any n > 0, there exists a split exact sequence

0 — Ext(H,_1(X),G) — HY(X;G) — Hom(H,(X),G) — 0
which induces isomorphisms

H"(X; G) = Hom(H,(X), G) & Ext(H,_1(X), G).
Proof. Apply the previous Lemma to Co = Se(X). O

Universal Coefficient Theorem for Homology

Definition 19.15. Let G be an abelian group. Let A C X be a subspace. We define the relative singular
chain complex with coefficient in G by

Se(X,A;G) :=S¢(X,A) ®7G.
Its homology is called the relative singular homology with coefficient in G, denoted by He (X, A; G). When
A = @, we simply get the singular homology He(X; G).
Similar long exact sequence for relative singular homologies follows from the short exact sequence
0= Se(A;G) = Se(X;G) = Se(X,A;G) — 0.

Theorem 19.16 (Universal Coefficient Theorem for homology). Let G be an abelian group and X be a topological
space. Then for any n > 0, there exists a split exact sequence

0 — H,(X)®G — Hy(X;G) — Tor(H,_1(X),G) = 0
which induces isomorphisms
H,(X;G) = (Hy(X) ® G) @ Tor(H,_1(X), G).

The proof is similar to the cohomology case.
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Hurewicz Theorem connects homotopy groups with homology groups. Recall that
Fi,(S") = Z.
Let us fix generators i, € H,(S") which are compatible with the isomorphisms
Hy(8") = Hy(D", ") = Hy(S"71).
Definition 20.1. For n > 1, the Hurewicz map is
pn: ta(X) — Hy(X) bysending [f:S" — X] — fi(in).

Proposition 20.2. The Hurewicz map is a group homomorphism.

Proof. Given f,g: S" — X representing [f], [¢] € 7, (X), their product in 77, (X) is represented by
st % gnyst N xvx X
Here the map ¢ shrinks the equator S"~! of S” to a point, and 5" /S"~! = S§" v §". Apply H,,(—) we get

Hy(S™) %5 Ha(S") @ Ha(5") 5 H,(X) @ Ha (X) 0 H, (X).
Observe ¢, : H,(S")— H,,(S") & H,,(S") is the diagonal map x — x @ x. It follows that

en([f118]) = filin) + g« (in) = pu(f) + pn(g)-

Given a group G, let G, = G/[G, G| denote its abelianization. The quotient map
G — Gyp
is called the abelianization homomorphism, which is an isomorphism if G is an abelian group.

Theorem 20.3 (Hurewicz Theorem). Let X be a path-connected space which is (n — 1)-connected (n > 1). Then
the Hurewicz map

Pn (X)) = Hp(X)
is the abelianization homomorphism.
Explicitly, Hurewicz Theorem has the following two cases.
1°. If n = 1, then the Hurewicz map p; : 711(X) — Hj(X) induces an isomorphism
1 (X)ab = Hi(X).
2°. If n > 1, then the Hurewicz map p, : 7, (X) — Hy(X) is an isomorphism.
Before we prove the Hurewicz Theorem, we first prepare some useful propositions.
Proposition 20.4. Let f : X — Y be a weak homotopy equivalence. Then
fe : Hn(X) = Ha(Y)

is an isomorphism for all n.
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Proof. We can assume f is a cofibration. Then 7, (Y, X) = 0 for all n.

Let o = }_; n;0; represent an arbitrary element of H, (Y, X) where

o :N' =Y, doreX.

We can use the simplexes of 0;’s to build up a finite CW complex K with a subcomplex L, and a map
f:K—=Y, ¢(L)CX

such that [0] = f,[7] is the image of an element [y] € H,(K, L) under f. Since X < Y is an co-equivalence,
f is homotopic relative L to a map g that sends K into X.

e

L X
g 7
s/
T

K Y

\

~—__7

f
So [o] = g«[v] = 0. It follows that H, (Y, X) = 0 for all n. This proves the proposition. O
Proposition 20.5. Let Y = \/ 5" is a wedge of spheres (n > 1). Then
T (Y) — Ha(Y)
is the abelianization homomorphism.

Proof. If n > 1, then 7, (Y) = Hy(Y) = @ Z. If n = 1. then my(Y) is a free group, H;(Y) is a free abelian
group which is the abelianization of 711 (Y).

O

Proof of Hurewicz Theorem. We can assume X is a CW complex. Otherwise we replace X by a weak homo-
topic equivalent CW complex, which has the same homotopy and homology groups by Proposition 20.4.
The construction of CW approximation also implies that we can assume

Xcx!c..cx"'cX"c---CcX
where X = X! = ... = X"~ is a point. Since
(X" = ma(X), Ha(X") = Ha(X),

we can further assume X = X"*1. By assumption

X" =\/s"

i
is a wedge of spheres. Let
p:[]s" = \S"
« i

be the gluing map for attaching (n + 1)-cells. Using the cellular approximation, we can assume ¢ is based

p:Y=\/5"—=\/s"
[ i

Let

Z=M,
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be the reduced mapping cylinder of ¢, which is homotopy equivalent to X". X is the cofiber of ¢
X=27Z/Y.

We have the push-out diagram
p

— %

L

where x is the base point. Replacing * by the reduced cone C,Y and consider the push-out

Yy —'scy
fl |
Z— X

Since j is an (n — 1)-equivalence and i is an n-equivalence, Homotopy Excision Theorem (Theorem 14.1)
implies

(Z,Y) = (X, CY) = my(X) if n>1.
This implies the exact sequence

T (Y) = mu(Z2) = mp(X) = w1 (Y) =0 if n>1.

For the case n = 1, Seifert-van Kampen Theorem implies that 771 (X) is the quotient of 711 (Z) by the normal
subgroup generated by the image of 71 (Y).

On the other side, we have the homology exact sequence

H, (Y) = H,(Z) = Hy(Z,Y) = Hy(X) — H,_1(Y) = 0.

Now we consider the commutative diagram
70 (Y) —— 7a(Z) —— 7a(X) —= 0
o
Hy(Y) — Hu(2) — Hu(X) —0
Proposition 20.5 implies that
m(Y) - Hy(Y) and m,(Z) — Hy(Z2)
are abelianization homomorphisms. Therefore 71, (X) — H,(X) is also the abelianization homomorphism.

O

Example 20.6. The homology of S" and Hurewicz Theorem implies that

0 if k<n
nk(sn):{z %f k=n
1 = n.

In particular, the degree of amap f : S* — 5" can be described by either homotopy or homology.

Hurewicz Theorem has a relative version as well.
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Theorem 20.7. Let (X, A) be a pair of path-connected spaces and A non-empty. Assume (X, A) is (n — 1)-connected

(n > 2) and A is simply-connected. Then
H,(X,A) =0 for i<n

and the Hurewicz map
(X, A) = Hy(X, A)

is an isomorphism.

Theorem 20.8 (Homology Whitehead Theorem). Let f : X — Y between simply connected CW complexes.

Assume
fie : Hy(X) — Hy(Y)

is an isomorphism for each n. Then f is a homotopy equivalence.

Proof. We can assume X is a CW subcomplex of Y. Then
H,(Y,X) =0 forall n.

By Hurewicz Theorem,
(Y, X) =0 forall n.

Therefore f is weak homotopy equivalence, hence a homotopy equivalence by Whitehead Theorem.

Proposition 20.9. Every simply connected and orientable closed 3-manifold is homotopy equivalent to S3.

Proof. Let X be a simply connected and orientable closed 3-manifold. Then
Ho(X) =Z, Hi(X)=m(X)=0.

Since X is orientable, H3(X) = Z and Poincare duality holds (we will discuss in details later)

H,(X) = HY(X).
By the Universal Coefficient Theorem,

H!(X) = Hom(H;(X),Z) @ Ext(Ho(X),Z) = 0.

So Hy(X) = 0. By Hurewicz Theorem,

73(X) — Hz(X)
is an isomorphism. Let f : $3 — X represent a generator of 713(X) = Z. Then

fie : Ho(S%) = Ho(X)

are isomorphisms. It follows that f is a homotopy equivalence.

Remark 20.10. The famous Poincare Conjecture asks that such X is homeomorphic to S°.

O
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Motivation

Many applications of (co)homology theory are reduced to the computation
H(C*,9)

of (co)homologies of certain (co)chain complexes. Usually the differential ¢ is complicated, making the
(co)homology computation difficult. However, if we observe that "part” of the differential ¢ is simple, say

=0+

while the computation of §;-cohomology is easier to perform, then we would like to use the ;-cohomology
to approximate and compute the full §-cohomology. This is the idea of spectral sequence.

Let us motivate this idea by a standard example. Consider the double complex
K= B Kkr
pa=0

which is equipped with two differentials

5y : KPA — KpAHl
5y : KPA — KPH14

such that
03 =05=0, 0616;+ 008, =0.

Consider the total complex

Tot*(K), Tot"(K)= € KM
ptg=n

with the differential
D = 41 + 05.
Our assumption on é1, d, implies that
D* =0.
Therefore (Tot®(K), D) indeed defines a cochain complex, and we are interested in

H* (Tot* (K), D). o
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Let x be a representative of an element in H" (Tot®* (K), D). We can decompose x into
X=xo+x+---, x &K™ML

The cocycle condition Dx = 0 is equivalent to

(51x0 =0
(52X0 = —(51x1
52)(1 = —(519(2
Let us formally write
xlll — ” _ 51715sz, x2/l — r” _ 5;162x1/

Here the inverse d;° ! does not exist and this expression is only heuristic. Then we would solve
1

1+6; 62

while x( represents a cocycle for (Tot®(K), d1 ). Intuitively, we treat J, as a perturbation of §; and

D = (61 + )" = "61(1 + 5,1 52).

“ ”

0

So

1
Dx” = "8;(1+6716,) ————x" = "61x0 = 0.
1( 1 2)1 +51,152 0 140

The above discussion is of course vague and heuristic. But it motivates the following idea: we can
construct a D-cocycle x by first looking at a 1-cocycle x( as a leading approximation, and then constructing
X1, Xy, - - order by order using information from H®(d; ). This leads to the following statements

1°. IfH*(61) =0, then H*(D) = 0.
In fact, let x be a D-cocyle as above. Since d;xy = 0 and H®(41) = 0, we can find
Yo € K%"=1 guch that xg= 1Yo-
Replacing x by x — Dy, we can assume Xy = 0 so x starts from x;. Then
Dx =0= 4x1 =0.

By the same reason, we can further kill x; to assume that x starts from x;. Iterating this process, we
can eventually find y such that
x = Dy.
So x is a D-coboundary. It follows that H*(D) = 0.
2°. If H*(d1) # 0, then we need to understand

whether d1x;11 = —drx; 1is solvable.

This puts extra condition on the initial data x( that allows to be an approximation of a D-cocycle.
For example, we want to solve
01x1 = —daXp.
Since
d1(02x0) = —0201%9 =0,
we know —dpxp is 61-closed. The problem is whether this is J1-exact. We can view

o 1 H*(61) — H*(d1)
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as defining a cochain complex (H*(d1), &), then the solvability of x; asks that the class [xy] € H*(d7)
is in fact dp-closed
d2[xo] = 0.
Therefore the “2nd”-order approximation of a D-cohomolpgy is an element in
H*(H*(é1), 62).
This will be called the E>-page. Similarly, we will have E3-page, E4-page, etc, and eventually find
the full description of D-cohomologies. Such process is the basic idea of spectral sequence.

Spectral sequence for filtered chain complex

Spectral sequences usually arise in two situations

1°. A Z-filtration of a chain complex: a sequence of subcomplexes - -+ C F, C Fpyq1 C -+ -.
2°. A Z-filtration of a topological space: a family of subspaces - -+ C X, C Xp41 C .

We first discuss the spectral sequence for chain complexes.

Definition 21.1. An (ascending) filtration of an R-module A is an increasing sequence of submodules
 CHRACF,1AC: -
indexed by p € Z. We always assume that it is exhaustive and Hausdorff

\|JFb A=A (exhaustive), [|F,A=0 (Hausdorff).
p p

The filtration is bounded if F,A = 0 for p sufficiently small and F,A = A for p sufficiently large. The
associated graded module Grl A is defined by

Gri(A):= @ Gr, A, Gr, A:=F,A/F,_1A.
pEZ

A filtered chain complex is a chain complex (C,,d) together with an (ascending) filtration F,C; of each C;
such that the differential preserves the filtration

a(FpCi) G chi—l-
In other words, we have an increasing sequence of subcomplexes F,Cs of C,.

Remark 21.2. There is also the notion of a descending filtration. We will focus on the ascending case here.

A filtered chain complex induces a filtration on its homology
F, Hi(Co) = Im(H;(F,C.) — H;(Co)).
In other words, an element [«] € H;(C,) lies in F, H;(C,) if and only if there exists a representative x € F,C;
such that [a] = [x]. Its graded piece is given by
Ker(o : F,C; — F,C;_1)
Grb H;(C,) = P P
B HilC) = T G et

Notation 21.3. In this section, our notation of quotient means the quotient of the numerator by its intersec-

tion with the denominator, i.e., % = ﬁ.

Definition 21.4. Given a filtered R-module A, we define its Rees module as a submodule of A[z,z™!] by

Ap= P FAzF C Alz,z7').
peZ
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Our conditions for the filtration can be interpreted as follows

1°. increasing filtration: A is a R[z]-submodule of A[z,z '] and z : Ap — Ap is injective.
2°. exhaustive: Af[z~'] ;= Ap @, R[z,27 1] equals Alz,z71].

3°. Hausdorff: N zPAr =0in A[z,z71].
p=0

The associated graded module is given by
Gri(A) := Ap/zAr.
Geometrically, we can think about Az, z~ 1] as the space of algebraic sections of the trivial bundle on C*
with fiber A. Then A defines the extension of this bundle to C, whose fiber at 0 is precisely GrE (A).

Let (C., 9, F,) be a filtered chain complex. Let us denote its Rees module by

Cri= P FCaz’ CCalz,z7 1.
peZ

(Cr, ) is also a subcomplex of (Ce[z,z71],). This defines a map on homologies
He(Cr,d) — He(Colz,271],0) = Ho(Cs,0) (2,27 1].

The image of He (Cr, ) defines a C[z]-submodule of He (Cs,d)[z,z1]. It induces a filtration on He (C,,9) as
described above. Our goal is to analyze the map

¢ : He(CF,0) — Ho(Cs,0)[z,27 ]
in order to extract the information about this induced filtration on He (Ca,, 9).

Firstly
H,(Cr,9) = € He(FyC,,0)z".
pezZ
However, the z-action
2 : He(Cp,0) — He(CF,9)

may not be injective. Those elements that are annihilated by z™ for some finite m will be killed under ¢. One
way to kill such elements is to look at im(zN) for N big enough. This motivates the following construction.
Let us define
{x € Cp|ox € 2/ Cr}
- zCr +z1-79Cr
E" can be viewed as the r-th order approximation. E” carries a differential

E":

or:E" = E', [x] — z7"[9x].
9y is indeed well-defined. In fact, let za + z! "9 represent an element in zCr + z! ~"9Cr. Then
0,(za 4+ 2z 7"9B) = z17"9n  which is zero as a class in E'.

Obviously, 92 = 0. We can define its homology by

_ kero,
"~ imo,

H(E",d,) :

Claim. The homology of (E', ;) is precisely E'+1

H(E",9,) = E'*L.
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Proof. Assume [x] € ker o, in E". 9,[x] = z7"[dx] = 0 implies the existence a, B € Cr such that
ox =2/ (za +2z1779B) = 2 Tla + 208, 9B € ICp.

We have d(x — zB) = z!™"a, so [x — zp] defines an element in E’*!. This class does not depend on the choice
of a, B. Therefore we have a natural map

f:kerd, — Et1
which is clearly surjective.
Assume [x] = 0,[y]. Then there exists u,v € Cp such that
x =z "9y +zu+z""ov.
So
flx]) = [x —zu] = [z7"a(y + z0)] = 0.
Therefore

imad, C ker f.

On the other hand, assume f([x]) = 0. Then there exists u,v € Cr such that

x—zB=zu+z'dv, Jdu=7z"a.

We find [x] = 9,[v]. Hence
ker f C imo,.

It follows that ker f = im d,. This proves the claim.

We can describe (E”, 9,) explicitly in terms of components. Let us denote

(Cr)pg = FpCprqg-

There is a natural identification

Cr= P (Cr)pg
pgEL
Similarly, we can decompose
E= @ E,
P.9EZ

where
_ {x € BCpiglox € By Cpig 1}

Fy—1Cprq + 0Fpir—1Cpigi

r

pAq

The differential 9, acts on components by

O Epy = Ep o1, X —OxX
EY is given by
E'=Cp/2Cs, ES,=GrhCpiy = ;”Cié”
p—1%p+q
E! is given by
_ {xeCplox e zCr}

El
zCp 4+ dCr

H(Cr/zCr,9), E,,=Hp4(Gr,Co).
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If the filtration of C; is bounded for each 7, then for any p, g and r >> 0,

~ {x e F,Cpyylox =0}
q=

E; = Grp Herq(C.).

Fy 1Cptqg +9Cpig41
In this case, we say {E"}, converges to Gr, H(C, ) and write
E® = Gre H(C,).
Motivated by the above discussion, we now give the formal definition of spectral sequence.
Definition 21.5. A spectral sequence (of R-modules) consists of

e an R-module E}, ; forany p,q € Zandr > (;
e adifferential o, : E}, , — E;Fr,qﬁdrl such that 92 = 0 and E"*! = H(E’, 9,).

A spectral sequence converges if for any p, g, we have
T prtl —
Es=En; = for r>>0.

This limit will be denoted by E7°,.
The following theorem follows directly from our discussion above.

Theorem 21.6. There is an associated spectral sequence for any filtered chain complex (Ca, 9, Fo ) where

r

_ {x & chp+q|ax € Fp_GC+q,1}

P Fp1Cptq +9F4r-1Cp 1441
and
. T j
O Epy = Ep pir 1, X OX

The E'-page of the spectral sequence is
E, . =Hpi4(Gr} C.).

If the filtration of C; is bounded for each i, then the spectral sequence converges and

E;?q = GI'p Hp+q(C.).

Spectral sequence for filtered cochain complex

The spectral sequence for filtered cochain complexes is similar. We will briefly summarize the result.

Definition 21.7. A filtered cochain complex is a cochain complex (C®,d) with a (descending) filtration
+ DFRC D FC D
of each C' such that the differential preserves the filtration
d(F,C') C F,CHL
In other words, we have a decreasing sequence of subcomplexes F,C*® of C*.
The associated graded complex is

Gr), C* = F,C*/F,41C".

The convention for a special sequence in this case is

e an R-module E/"? for any p,q € Zand r > 0;

e adifferential d, : E/" — EF*"17"" such that d?> =0and E,, 1 = H(E,, d,).
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Theorem 21.8. There is an associated spectral sequence for any filtered cochain complex (C®,d, Fo) where

{x € F,CPT|dx € F,,,CPHit1}

E} =
Fy1CPH1 4+ dF,_, 1 CPHI-1

and
—r+1
d,: EPT — Ef”’q T x = dx.

The Eq-page of the spectral sequence is
EPT = HPH(Gr, C*).
If the filtration of C! is bounded for each i, then the spectral sequence converges and

E5T = Gr, HPT(C*).

Double complex

Let us come back to the double complex example discussed in the beginning

K= & K1

p.q>0

which is equipped with two differentials
51 : KPA — KPAa+l
8y : KPA — KPH14
We want to compute the cohomology of the total complex
H*(Tot*(K),D), D =61+ 6.

Let us define a descending filtration on K by

K= @ K"

m>p,n>0

This induces a descending filtration on Tor® (K) by

F, Tor*(K) := Tor* (F,K)
133



21 SPECTRAL SEQUENCE

whose graded associated complex is

Gr, Tor* (K) = @5 KM
q=>0

The E; page of the spectral sequence is
EVT =HJI(K), di =0

Here Hgl'q (K) is the d;-cohomology for the double complex K, which is again double graded.

The E; page of the spectral sequence is

Ey" = HY H;, (K).

An element of E}? is represented by an xy € KP that can be extended to a chain
X=xg4+x +Axq, x€KPHATI

such that

Dx € Kp+r+1,q7r.

In other words, we can solve the following recursive equations up to x,_;

51350 =0

523(0 = *513(1

(52961 = —(513(2
02Xy 2 = —01Xp_1.

The corresponding differential for the E,-page is

dr[xo] = [Dx] = [62x,_1]-
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Cellular chain complex revisited
Let X be a CW complex with cellular structure
X(O) CX(l) C...Cx(”) C -
We define an ascending filtration on the singular chain complex So(X) by

FpSe(X) = Sa(X(P)).

The E%-page is

Spra(X(P)
Epyq = Grp(Sp+q(X)) = praX7) Spiq(XP), X)),

B Sp+q(X(p_1))

Therefore the E'-page computes the relative homology
CHll(X) g=0

El —H,. ,(xP x(P-1y =
P4 p+q( ) 0 q;«éO

which gives precisely the cellular chains.

0 0 0 0

C(c)ell Cie” CEEUH' L C;ﬂ’ll(i. .

FIGURE 33. E!-page

By chasing the definition, we find that the differential 9; coincides with the cellular differential
9: Cy'(X) — C (X).

Therefore the E2-page is

2o HY(X) q=0
i

0 q#0
q
0 0 0 s 0
ngll Hig” ngll . H;ell

FIGURE 34. E2-page
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The shape of this E2-page implies that
0p=03=---=0, = E>=F=...=E%,
This explains why the cellular homology computes the singular homology.

Leray-Serre spectral sequence

Let 1 : E — B be a Serre fibration with fiber F and base B.

i

F——

Assume B is a simply-connected CW complex. Then there is the Leray-Serre spectral sequence with E2-page

Efm =H,(B) @ Hy(F)

that converges to Gr, Hyy4(E).

The idea of this spectral sequence is that we can filter the singular chain complex of E such that it favors

for the computation of singular homology along the fiber first. Explicitly, we can use the cellular structure

B(O) CB(l) C"'CB(H) C .-
to obtain a filtration of topological spaces for E

E(O)CE(l)C...CE(”)C...

I

where E( is given the pull-back

21—

We will not give the details here, but instead illustrate its use by some examples.

Example 21.9. Consider the fibration (n > 2)

Qs —— PO

|

Sn
Here PQ)" is the based path space of S". We have
Z p=0, Z k=0
Hy(s =7 P07 mpary =
0 p#0,n 0 k>0
To arrive at Ho (PQ)"), the Leray-Serre spectral sequence must be of the form
E2:E3:___:En

where the only non-zero terms are in the shaded locations as in the figure below.
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"t
2n — 2 Hay 2(QS") Hy, 2(QS")
n— 1 Hy—1(QS") H,_1(QS")
0 |Ho(Qs™) Hy(QS")
0 n [4

Furthermore, the maps
dn t H, 1)1 (QS") = Hyy 1y 1) (QS"), k>0
must be isomorphisms in order to have E® = GrH, (PQ") = Z. We conclude that

Z i=k(n—1)

0 otherwise

H;(QS") =

Example 21.10. We illustrate Serre’s approach to Hurewicz Theorem via spectral sequence.

Assume we have established Hurewicz Theorem for the n = 1 case 711 — H;. We prove by induction for
the n > 2 case. Let n > 2 and X be a (n — 1)-connected CW complex. Consider the fibration

0OX —— PX

|

X

The E2-page of the Leray-Serre spectral sequence is

H; (QX)

Z \ Hy(X)

FIGURE 35. E2-page
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Since PX is contractible, the map
Hy(X) — Hi(Qx)
must be an isomorphism. This shows

Hy(X) = Hi(Qx) = m(Qx) = m(X) (=0ifn >2).

We can iterate this until we arrive at

Hn—l(QX)

FIGURE 36. E"-page

Again by the contractibility of PX, 9, must induce an isomorphism
induction

Hy(X) = H, 1 (QX) 7= 1,1 (QX) = 7a(X).

This is the Hurewicz isomorphism.
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Eilenberg-Zilber Theorem

Definition 22.1. Let (C,,d¢) and (D, dp) be two chain complexes. We define their tensor product Ce ® D,
to be the chain complex

(Ce®@Da)i:= Y. Cp®Dy
p+q=k

with the boundary map 0 = dcgp given by

d(cp ®dy) :=9c(cp) ®dyg+ (=1)Pc, ®dp(dy), ¢p € Cp,dg € Dy.

This sign convention guarantees that
9* =0.

Proposition 22.2. Assume C, is chain homotopy equivalent to Cl,. Then Co ® D, is chain homotopy equivalent to
Cl, @ D.

f
Proof. Assume C, C, define chain homotopy equivalence such that

g
lop— fog=0c o8 45 0de
lc —gof =0cos+s00c
where
5:Co = Cog1, 8 :CL = Cpyyg.
Then our sign convention implies
logp = (f@1p) o (§®1p) =dcigp o (s' @ 1p) + (s' @ 1p) 0 dcrep
leop = (§®1p) e (f®1p) = dcgp o (s®@1p) + (s ®1p) 0 dcrep
leaing to chain homotopy equivalence

f®lp

—
Ce®@De _ ~C,®D, .

§®1p

We would like to compare the following two functors
Se(— X —),Se(—) ® Se(—) : Top x Top — Che
which send
XXY = 8Se(XxY) and Se(X)® Se(Y).
We first observe that there exists a canonical isomorphism
Ho(X x Y) = Ho(X) ® Ho(Y).

The following theorem of Eilenberg-Zilber says that such initial condition determines a natural homotopy

equivalent between the above two functors which is unique up to chain homotopy:.
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Theorem 22.3 (Eilenberg-Zilber). Then there exist natural transformations

F
So(_ X _) So<_)®So(_)
G
which induce chain homotopy equivalence
5
Se(X X Y) Se(X) ®Se(Y)
G

for every X, Y and the canonical isomorphism Ho(X x Y) = Hy(X) @ Ho(Y). Such chain equivalence is unique up
to chain homotopy. In particular, there are canonical isomorphisms

Hy (X % Y) = Hp(Se(X) @ Sa(Y)), ¥n > 0.

F, G will be called Eilenberg-Zilber maps.

(ox,0y)
%y

Proof. Observe that any map A? X x Y factors through

5 :
AP B AP s AP TS X Y

6
where AP 5 AP x AP is the diagonal map. This implies that a natural transformation F of the functor
Se(— x —) is determined by its value on {4, } ,>0. Explicitly
F((ox,0y)) = (0x ® 0y)«F(Jp).
Similarly, a natural transformation G of the functor Se(—) ® Se(—) is determined by its value on 1, ® 1,
where 1, : AP — AP is the identity map. Explicitly, for any oy : A? — X, 0, : AT — Y, we have
Glox ®ay) = (0x x 0y)«G(1, ® 1).
Therefore F and G are completely determined by

for=F@n) € D Sp(A")@84(A"), gn:= P G, @1) € P Sa(A? xAT).
p+q=n ptq=n ptg=n

We will use the same notations as in Definition 17.4. Then

frogn € Su(A" x A"), guofu € D (Se(A) @ Se(AT))n.
ptq=n

Let us denote the following chain complexes

Cn = [ (Se(8) ®Su(A))sr, Du =] < D Surpiq(a? x M))

k>0 m>0 \p-+q=m
with boundary map
0+0:Cyp =+ Cy_1, 90+0:Dy— Dy
as follows. 9 is the usual boundary map of singular chain complexes
9 : (Se(AF) @ So(AF))y — (Se(AF) @ Sa(AF)) 1, 0:  Su(AF x AT) = S,_1(AP x AT).

0 is the map induced by composing with the face singular chain d = Y, dAF € [T, Sp_1(A¥)

3:Sp(A* 1) @ S5(A ) = S,(AF) @ S,(A%), oy @0, = doy @00y
and

01 Su(AF x AT) — Sy (AP x AT) @ S, (AP x AT, 0y x 0y = (d00p) X 05+ (—1)"Po, x (do0y).
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Let f = (fu) € Cpand g = (gn) € Dp. Then it can be checked that
F, G are chain maps <= f, g are 0-cycles in C,, D,
and natural chain homotopy of F, G are given by 0-boundaries. We claim that
H, (Ca) = {Z =0 (D))= {Z n=0
0 n#0 0 n#0
We sketch a proof here. In fact, there exists a spectral sequence with
Ei-page :H(—,0)
Ey-page : H(H(—,9),9)

and converging to d + 0-homology. We need to use a stronger version of convergence than Theorem 21.8,
which is guaranteed by the choice of direct product (so formal series is convergent) instead of direct sum in
the definition of C,, and D,,. We leave this delicate issue to the reader.

For C,, the Ej-page Hq(C,, 0) is (using Proposition 22.2)

[z n=0
1(Ce,d) = [T Hi(Se(AF) ® Su(AF)) = { k20
k>0 0 n # 0.

It is not hard to see that o acts on this E;-page as

0: HZ — HZ (le)kzo — (mk)kZO
k=0 k>0

(1+ (=1)")me1.

N —

where my; =
In components, this can be represented by

0-z2zLz%z 1L ...

whose 0-homology is now Z concentrated at degree 0. It follows that Ey = E3 = - - - = Eo, and therefore
Z n=0
Hﬂ (C. ) -
0 n#0.

The computation in the case of D, is similar. This implies that the initial condition completely determines
chain maps F, G up to chain homotopy.

Let us now analyze the composition F o G and G o F. We similarly form the chain complexes

Cp, = [T Snir(AF x AF), =1 D (Se(a?)@S8e(AN),ipig

k>0 m>0 p+g=m

with boundary map 9 + 9 defined similarly. Homology of C,, controls natural chain maps of Se(X x Y) to
itself up to chain homotopy, and similarly for D;,. We still have

, Z n=0 , Z n=0
H"(C'):{o n#0 H"(D°):{0 n£0

It follows that F o G and G o F are both naturally chain homotopic to the identity map. The theorem follows.

]
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An explicit construction of G can be described as follows: given gy : AY — X, 0, : AT =Y,
Glop®oy) : AP x AT — X xY

where we have to chop A? x A7 into p + g-simplexes (similar to the decomposition of A" x Al = A" x I as
in Proposition 15.16). This is the shuffle product.

An explicit construction of F can be given by the Alexander-Whitney map described as follows.
Definition 22.4. Given a singular n-simplex 0 : A" = X and 0 < p,q < n, we define
o the front p-face of o to be the singular p-simplex
p0 AP — X, o(to, -, tp) i=0(to, - ,tp,0,-++,0)
e the back g-face of ¢ to be the singular g-simplex
o : AT = X, oy(to, - ,tg) :=0(0,---,0,tg,- -+, tg).

Definition 22.5. Let X, Y be topological spaces. Let rx : X XY — X,y : X X Y — Y be the projections.
We define the Alexander-Whitney map

AW 1 S(X X Y) = Se(X) ® Se(Y)
by the natural transformation given by the formula

AW(0) = Y p(nxo0)® (myoo),.
p+q=n

Theorem 22.6. The Alexander-Whitney map is a chain homotopy equivalence.

Proof. It can be checked that AW is a natural chain map which induces the canonical isomorphism
Ho(X X Y) — HO(X) &® Ho(Y)

Therefore AW is a chain homotopy equivalence by Eilenberg-Zilber Theorem. O

Kiinneth formula
Lemma 22.7. Let C, and D, be chain complex of free abelian groups. Then
Ho(co ® Do) - H.(C. & H.(D))

Here Ho (D) is viewed as a chain complex whose boundary map is zero.

Proof. Consider the exact sequence
0—-2%2,—D, —B,.1—0

where Z,, are cycles in D, and B,,_; are boundaries in D,,_;. Since D,’s are free, Z, and B,,_; are also free
abelian groups. Let Z,, Bs be chain complexes with zero boundary map. Then we have an exact sequence
of chain complexes

00— Ze -+ De —>Be_1—0

whose associated long exact sequence of homologies splits into
0 — By — Z, — Hyu(D.) — 0.
Tensoring with C,, we find an exact sequence

0= Co®Z¢ —Coe ®Dg — Co ®Be_1 — 0
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which induces a long exact sequence
co+ > Hyi1(Co ® Do) = Hy(Co @ Be) = Hy(Co @ Zo) — Hy(Co ® Do) — H;;_1(Co ® Be) — - - -
Since B, — Z, are embeddings of free abelian groups, the maps

H,(Coe®Bs) = € Hy(Co) ®B; = Hy(Co®Zs) = D Hp(Co) ®Z,
ptq=n p+q=n

are also injective. O

Theorem 22.8 (Algebraic Kiinneth formula). Let Cq and D, be chain complex of free abelian groups. Then there
is a split exact sequence

0 — (Ha(C) @ Ho(D)), — Hy(Co ® Da) — Tor(Ha(C), Ha(D))y_1 — 0.

Here Tor(He(C),He(D))r = @ Tor(H,(C),Hy(D)).
p+g=k

Proof. Consider the exact sequence

0—+Z72,—Dy,—B,_.1—0
where Z,, are cycles in D, and B,,_ are boundaries in D,,_;. Since D,’s are free, Z, and B,,_; are also free
abelian groups. Let Z,, B, be chain complexes with zero boundary map. Then we have an exact sequence

of chain complexes
00— Ze —->Deg —>Be_1—0

Tensoring with C, and since C,’s are free, we find an exact sequence of chain complexes
0 >Ce®Ze =+ Ce®@De = Ca®@Bg_1 =0
which induces a long exact sequence
v = Hy1(Co @ Do) — Hyy(Co @ Bo) — Hyy(Co ® Zo) — Hy(Co @ Do) — Hy—1(Co @ Be) — - -

On the other hand, we have
0 — By — Z; — Hy(Ds) — 0.

Tensoring with H,(C, ), we find
0 — Tor(H,(Ce),Hy(Ds)) — Hp(Co) ® By — Hp(Co) ® Zyg — Hp(Co) @ Hy(Ds) — 0.
Since Bq, Zq’s are free,
H,(Ce) ® By = Hp(Co ® By), Hy(Co) ® Zy = Hy(Co ® Zy).
Summing over p, g, we find
0 — Tor(He(C),He(D))n — Hy(Co ® Ba) = Hy(Co @ Zs) — (Ho(C) @ Ha(D)),, — 0.
Combining with the above long exact sequence, we arrive at the required short exact sequence

0 — (He(C) ® He(D)),, — Hy(Co @ Dy) — Tor(He(C),He(D)),_1 — 0.

O
Theorem 22.9 (Kiinneth formula). For any topological spaces X,Y and n > 0, there is a split exact sequence
0— P Hy(X)®@Hy(X) = Ho(XxY)—= @ Tor(H,(X),Hy(Y)) — 0.
pt+g=n ptg=n—1
Proof. This follows from the Eilenberg-Zilber Theorem and the algebraic Kiinneth formula.
O

143



23 CUP AND CAP PRODUCT

23 CUP AND CAP PRODUCT

One of the key structure that distinguishes cohomology with homology is that cohomology carries an
algebraic structure so H®*(X) becomes a ring. This algebraic structure is called cup product. Moreover,
H, (X) will be a module of H*(X), and this module structure is called cap product.

Let R be a commutative ring with unit. We have natural cochain maps
S*(X;R) ®@r S*(Y;R) = Hom(Se(X) ® So(Y),R) = S*(X X Y;R)
where the first map sends ¢, € SP(X;R), 7, € S1(X; R) to ¢, ® 17; where
Pp @1y 0y @0y = p(0p) -19(0y), 0p € Sp(X), 0y € S4(X).
Here - is the product in R. The second map is dual (applying Hom(—, R)) to the Alexander-Whitney map

AW : So(X X Y) = So(X) @ So(Y).

This leads to a cochain map
S*(X;R) ®r S*(Y;R) = S*(X X Y;R)
which further induces
H*(X;R) ®r H*(Y;R) — H*(X x Y;R).
Cup product
Definition 23.1. Let R be a commutative ring with unit. We define the cup product on cohomology groups
U:HP(X;R) ®g H1(X;R) — HPT(X; R)

by the composition
H*(X;R) g H*(X; R) —— H*(X x X;R)
\ i
A*
H*(X;R)
Here A : X — X x X is the diagonal map.
Alexander-Whitney map gives an explicit product formula
(aUB) (o) =a(po)-Bloy), a€SP(X;R),BeSTX;R),0: AP — X.
Theorem 23.2. H*(X; R) is a graded commutative ring with uint:
1°. Unit: let 1 € HY(X; R) be represented by the cocyle which takes every singular O-simplex to 1 € R. Then
lUa=aUl=0a, VaecH*(X;R).
2°. Associativity:

(@UB)Ur=aU(pUY).

3°. Graded commutativity:

xUB=(-1)PMBUax, VaeH(X;R),peHI(X;R).
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Proof. Unit of 1 is checked easily. Observe that the following two compositions of Eilenberg-Zilber maps
are chain homotopic (similar to Eilenberg-Zilber Theorem)

Se(X XY XZ) = Se(XXY)®Se(Z) = Se(X) ®Sa(Y) ®Se(2)
Se(X XY XZ) = Se(X)RSa(YXZ) = Se(X) ®Se(Y)®Se(Z2).
Associativity follows from the commutative diagram (R is hidden for simplicity)

H* (X) @ H*(X) @ H* (X) —= H*(X x X) ® H* (X} 2L He (X) @ H*(X)

l b e

H*(X) @ H*(X x X) H*(X x X x X) H*(X x X)
l(le)* (le)*l lA*
H*(X) ® H*(X) H*(X x X) — 2 H*(X)

Graded commutativity follows from the fact that the interchange map of tensor product of chain complexes
T:Coe®De — Do ®Co
cp®dg — (—1)P1d; ®@cp
is a chain isomorphism. Therefore the two chain maps
Se(XXY) = Se(Y X X) = Se(Y) ® Se(X)
Se(X X Y) = Se(X) X Sa(Y) 5 Sa(Y) ® Sa(X)
are chain homotopic, again by the uniqueness in Eilenberg-Zilber Theorem.
Set Y = X we find the following commutative diagram
H*(X) @ H*(X) —— H*(X x X)
]
H*(X) @ H*(X) —— H*(X x X).
which gives graded commutativity.
Alternately, all the above can be checked explicitly using Alexander-Whitney map O
Theorem 23.3. Let f : X — Y be a continuous map. Then
f*:H*(Y;R) - H*(X;R)
is a morphism of graded commutative rings, i.e. f*(a UP) = f*a U f*B. In other words, H®*(—) defines a functor

from the category of topological spaces to the category of graded commutative rings.

Proof. The theorem follows from the commutative diagram
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Theorem 23.4 (Kiinneth formula). Assumem R is a PID, and H;(X; R) are finitely generated R-module, then there
exists a split exact sequence of R-modules

0— P H(X;R)®@HI(Y;R) - H"(XxY;R) » P TorX (HP(X; R),HI(Y;R)) — 0.
ptg=n p+q=n+1

In particular, if H*(X; R) or H*(Y; R) are free R-modules, we have an isomorphism of graded commutative rings
H*(X x Y;R) 2 H*(X;R) ®g H*(Y; R).
Example 23.5. H*(S") = Z[n]/n? where 4 € H"(S") is a generator.

Example 23.6. Let T" = S! x - .- x S! be the n-torus. Then

~

H*(T") = Z[ny, -~ ,qul,  mim; = =11

is the exterior algebra with 1 generators. Each 7; corresponds a generator of H!(S').

Proposition 23.7. H*(CP") = Z[x]|/x"+!, where x € H?(CIP") is a generator.

Proof. We prove by induction n. We know that

Hf(CP") =

Z k=2m<2n
0 otherwise

Let x be a generator of H?(CIP"). We only need to show that x* is a generator of H*(CIP") for each k < n.
Using cellular chain complex, we know that for k < n

H*(CP") — H*(CP)

is an isomorphism. By induction, this implies that x* is a generator of H2*(CIP") for k < n. Poincare duality
theorem (which will be proved in the next section) implies that

H2(CP") @ H?'~2(CPP")  H¥'(CP")

is an isomorphism. This says that x" is a generator of H>"(CIP"). This proves the proposition.

Cap product
Definition 23.8. We define the evaluation map

(—, =) :S*(X;R) xg Se(X;R) = R
as follows: for a € SP(X;R),0 € Sy(X),r € R,

(d,c@r) :=ua(c)-r.

The evaluation map is compatible with boundary map and induces an evaluation map

(= —) :HP(X;R) ®r Hp(X;R) — R.
This generalized to

S*(X;R) ®Rg Se(X X Y;R) — S*(X;R) ®r Se(X;R) ®r Se(Y;R) © = Su(Y;R)

which induces
HP(X;R) ®g Hpﬂ(X X Y;R) — Hq(Y;R).
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Definition 23.9. We define the cap product
N:HP(X;R) ® Hp14(X;R) — Hy(X;R)
by the composition

HP(X;R) @ Hpyq(X; R) ——2 HP(X; R) ® Hy o (X x X; R
prq p+q

\ l
Hy(X;R)
Theorem 23.10. The cap product gives He (X; R) a structure of H*(X; R)-module.

Theorem 23.11. The cap product extends naturally to the relative case: for any pair A C X
N:H(X,A) @ Hp(X, A) — Hy(X)
N:HP(X) ®@Hp4(X,A) — Hy(X, A)

Proof. Since 5*(X, A) C S*(X), we have
N:5%(X,A) X Se(X) = Se(X).
We model the cap product on chains via the Alexander-Whitney map. Then
N:S°(X,A) x Sa(A) = 0.

Therefore N factors through

Se(X)
Se(A)
Passing to homology (cohomology) we find the first cap product. The second one is proved similarly using
Se(X) o, Se(X) ‘

Se(A)  Se(A)

M:S%(X,A) x — So(X).

N:S%(X) x
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Definition 24.1. A topological manifold of dimension # , or a topological n-manifold, is a Hausdorff space

in which each point has an open neighborhood homeomorphic to R".

In this section, a manifold always means a topological manifold. We assume n > 0. For any point x € X,
there exists an open neighborhood U and a homeomorphism ¢ : U — R". (U, ¢) is called a chart around x.

Orientation
Definition 24.2. Let X be a n-manifold. x € X be a point. A generator of
H, (X, X —x) 2 H,(R",R" —0) 2 Z

is called a local orientation of X at x.

For any x € X, there are two choices of local orientation at x. We obtain a two-sheet cover
m:X — X, where X = {(x,uy)|py is alocal orientation of X at x}.

Here 71 is the natural projection (x, x) — x. X is topologized as follows. Let U be a small open ball in X.
Then for any x € U, we have an isomorphism

H,(X, X —U) 2 H,(X,X —x)
which induces a set theoretical identification
I (U) 2 U x Z,.
Then we give a topology on X by requiring all such identifications being homeomorphisms. In particular,
7t : X — Xis a Zp-covering map.

Definition 24.3. A (global) orientation of X is a section of 7t : X — X, i.e., a continuous maps: X — X
such that 77 o s = 1x. If an orientation exists, we say X is orientable.

Theorem 24.4. Let X be a connected manifold. Then X is orientable if and only if X has two connected components.
In particular, a connected orientable manifold has precisely two orientations.

Proof. Assume X is orientable. Let s; : X — X be a section defining an orientation. Since 77 : X — X isa
double cover, we can define another section s : X — X such that {s1(x),s2(x)} = 7~ !(x) for any x € X.
The covering property implies that s, is also continuous, hence defining another orientation. The sections
51,57 lead to a diffeomorphism

X=Xx2zZ,=X]]X.
Conversely, if X has two connected component, then each one is diffeomorphic to X under the projection 7t
and so defines an orientation. O

Example 24.5. A simply connected manifold is orientable. This is because the covering of a simply con-
nected space must be a trivial covering.

Proposition 24.6. Let X be connected non-orientable manifold. Then X is connected orientable.

Proof. X is non-orientable implies that X has only one connnected component. Since 7 : X — X is a
covering map, it is a local diffeomorphism and induces an isomorphism

Hy(X, X - %) =H,(X,X—x), x=mr(%).
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In particular, we have a canonical section
s: X=X, = (%) = (% ).
This shows that X is connected orientable. O
Lemma 24.7. Let U C IR" be open. Then
H;(U) =0, Vi>n.
Proof. Let « € S;(U) represent an element of [¢] € H;(U). Let K C U be a compact subset such that
Supp(a) € K. Equip R"” with a CW structure in terms of small enough cubes such that
KcLcu

where L is a finite CW subcomplex. We have a commutative diagram

H;1(R", L) —— Hi11 (R, U)

| i

H;(L) H;(U)

By construction, [a] € H;(U) lies in the image of H;(L). But H; 1 (R", L) = Hfi”l(lR”, L)=0fori > n.

Lemma 24.8. Let U C IR" be open. Then the natural map

H,(R", U) - [] Hu(R",R"—x)
xeR"-U

is injective.
Proof. This is equivalent to the injectivity of

Hn—l(u) - 1_[ Hy,1 (]Rn 2 x)'
xeR*-U

Let a be a (n — 1)-chain representing a class [a]y in FI,,_1(U) which is sent to zero in the above map. We
can choose a big open cube B and finite small closed cubes Dy, - - - , Dy such that D; is not a subset of U and

Supp(e) CB—D;U---UDy C U.
Then a represents a class
[«] € H, 1(B—DyU---UDy) 2H,(B,B—D;U---UDy).
By assumption, it is mapped to zero
H, 1(B—D;U---UDy) = H,_1(B—Dj)
x—0

in each H, (B — D;) = H, (B, B — D;) = H, (B, B — x;) where x; € D; — U. We next show that [a] = 0 in
H, 1(B— Dy U---UDy), hence [];; = 0in H,,_1(U). This would prove the required injectivity.

Consider the Mayer-Vietoris sequence
Hn(V) — I:Infl(B —DiU---U DN) — I:Infl(B —DyU---uU DN) @I:Infl(B - Dl)
where V= (B—D,U---UDy) U (B— Dy) is open in R". By Lemma 24.7, H, (V) = 0. So

H, 1(B—DyU---UDy) = H,_1(B—DyU---UDy) ®H,_1(B—Dy)
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is an injection. It follows that [«] is zero in H,,_1(B — D1 U - - - U Dy) if and only if its image in H,,_1(B —
D, U ---U Dy) is zero. Repeating this process, we find [a] = 0. O

Fundamental class
Theorem 24.9. Let X be a connected n-manifold. For any abelian group G, we have

Hi(X;G) =0 i>n

{Hn (X;G) =0 if X is noncompact.
Proof. We prove the case for G = Z. General G is similar.
Step 1: X = U C R" is an open subset. This is Lemma 24.7.
Step 2: X = U UV where U open is homeomorphic to R and V open satisfies the statement in the theorem.
Consider the Mayer-Vietoris sequence
H;(U) @ H;(V) —» H;(UUV) = H; 1 (UNV) = H;_1(U) @ H; 1 (V)

For i > n, we find H;(UNV) = 0 by Step 1 since V N U can be viewed as an open subset in R”. Assume
X = U UV is not compact. We need to show

I:In—l(u N V) S I:In—l(v)

is injective. Given x € X, the noncompactness and connectedness of X implies that any simplex ¢ : A" —
U UV is homotopic to another singular chain which does not meet x. This implies that

H,(UUV) - H,(UUV,UUV —x)
is zero map for any x € X. Consider the commutative diagram, wherex ¢ U —-UNV
H,(UUYV)

| T

H,(UUV,UUV —x) <— H,(UUV,UNV) < H,(V,UNV)

lﬁ o~

H,(U,U—-x)<~—— H,(UUNV) — H, {(UNV) —>0

|

I:Infl (V)
Let « € H,(U,UNV) maps to ker(H,_1(UNV) — H,_1(V)). Diagram chasing implies that « maps to
zero in H, (U, U — x) for any x € U — U N V. Since x is arbitrary, this implies « = 0 by Lemma 24.8.
Step 3: General case. Let w € S;(X) representing a class in H;(X). We can choose finite coordinate charts
Uy, - -+, Uy such that Supp(a) C Uy U - - - U Uy. Then the class of « lies in the image of the map
H;(U1 U---UUy) — H;(X).
We only need to prove the theorem for U; U - - - U Uy. This follows from Step 2 and induction on N. O

Definition 24.10. Let X be an n-manifold. A fundamental class of X at a subspace A C X is an element
s € Hy(X, X — A) whose image
H,(X,X—A) - Hy(X, X —x)
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defines a local orientation for each x € A. When A = X, s € H,(X) is called a fundamental clas of X.
Theorem 24.11. Let X be an oriented n-manifold, K C X be compact subspace. Then

(1) Hi(X,X —K) =0foranyi > n.
(2) The orientation of X defines a unique fundamental class of X at K.

In particular, if X is compact, then there exists a unique fundamental class of X associated to the orientation.
Proof.
Step 1: K is a compact subset inside a cooridinate chart U = IR". Then by Lemma 24.7

H;(X, X - K)2H;(UU-K)2H,_ (U-K)=0 i>n.

Take a big enough ball B such that K C B C U. The orientation of X at the local chart U determines an
element of H, (X, X — B) = H,,(U, U — B) which maps to the required fundamental class of X at K.

Step 2: K = K; U Ky where K1, Ky, K1 N K; satisfy (1)(2). Using Mayer-Vietoris sequence

B 'HH_l(X,X—Kl ﬂKz) — Hi(X,X—Kl UKz) — Hi(X,X—K1>@Hi(X,X—K2> — Hi(X,X—Kl ﬂKz) — e

we see K satisfies (1). The unique fundamental classes at K; and K, map to the unique fundamental class
at K1 N Ky, giving rise to a unique fundamental class at K; U K; by the exact sequence

0 = Hy (X, X — K; UKy) = Hy (X, X — Ky) @ Hy(X, X — Kz) — Hy(X, X — K N Kp)

Step 3: For arbitrary K, it is covered by a finite number of coordinates charts {U;}1<j<n. Let K; = KN U;.
Then K = K; U - - - U Ky. The theorem holds for K by induction on N and Step 1, 2. O

Poincaré duality

Definition 24.12. Let K denote the set of compact subspaces of X. We define compactly supported coho-
mology of X by

HE(X) := colim HF (X, X — K)
Kek

where the colimit is taken with respect to the homomorphisms
Hf (X, X — K;) — HY (X, X — Kp)
for K; C Ky compact. In particular, if X is compact, then Hf(X) = H*(X).
Recall that a map is called proper if the pre-image of a compact set is compact. The functorial structure
of compactly supported cohomology is with respect to the proper maps: let f : X — Y be proper, then
£ HE(Y) = HE(X),

Example 24.13. Let X = IR". Consider the sequence of compact subspaces By C By C B3 C ---, where By
is the closed ball of radius k. Any compact subspace is contained in some ball. Therefore

. ) i i Z i=n
HI(R") = colim H!(R", R" — By) = colim' '(R" — By) = A (5" 1) = :
k k 0 i#n

Theorem 24.14. Let X = U U V where U, V open. Then we have the Mayer-Vietoris exact sequence

= HNUNV) s HY (U e HNY) - HY (X)) - H ' (UNVY) - -
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Let X be an oriented n-manifold. For each compact K, let {x € H, (X, X — K) be the fundamental class

determined by Theorem 24.11. Taking the cap product we find
D : HP (X, X — K) S H,,_,(X).
This passes to the colimit and induces a map
D :H (X) = Hy—p(X).
Theorem 24.15 (Poincaré Duality). Let X be an oriented n-manifold. Then for any p,
D : HE(X) = Hy—p(X)
is an isomorphism. In particular, if X is compact then HP (X) = H,_,(X).
Proof. We prove the theorem for all open subset U of X.

Step 1: If the theorem holds for open U, V and U N V, then the theorem holds for UU V.

This follows from Mayer-Vietoris sequence and the commutative diagram

——HNUNV) — BYU) e HY(V) ——— HN (U U V)

E |pe E E

HHUNV) — -

——H, «(UNV) —=H, «(U) ®H; (V) —=H, x(UUV) —=H, x 1(UNV) ——---

Step 2: Let U; C Uy C -+ - and U = U;U;. Assume the theorem holds for U;, then it holds for U.
This follows from the isomorphism

HE(U) = colimHE(U;),  H,—¢(U) = colim H, _(U).
1 1

Step 3: The theorem holds for an open U contained in a coordinate chart.
This follows by expressing U as a countable union of convex subsets of R".

Step 4: For any open U.

By Step 2, 3 and Zorn’s lemma, there is a maximal open subset U of X for which the theorem is true. By

Step 1, U must be the same as X.

O

152



25 LEFSCHETZ FIXED POINT THEOREM

25 LEFSCHETZ FIXED POINT THEOREM
In this section X will be an oriented connected compact #-dim manifold. [X] its fundamental class.
Intersection form

Poincaré duality gives an isomorphism

H/(X) = H,_;j(X).
The cup product on cohomology has a geometric meaning under Poincaré duality as follows. Let Y, Z be
two oriented closed submanifold of X. Assume dim(Y) = i,dim(Z) = j, and Y intersects Z transversely

so that their intersection Y N Z is manifold of dimension i + j — n. Y N Z has an induced orientation. Let
[Y]* € H""(X) be the Poincaré dual of the fundamental class [Y] € H;(X). Then

Y*u[Z]" =[YnZ]"
Therefore the cup product is interpreted as intersection under Poincaré duality.

An important case is when Y and Z have complementary dimension, i.e. i + j = n so that Y N Z is a finite
set of points, whose signed sum gives the intersection number of Y and Z.

Definition 25.1. We define the intersection pairing

(= =) Hi(X) x Hy—i(X) — Ho(X) = Z.
Equivalently, we have the pairing on cohomology
. A (X]
(— —) :H(X) xH"'(X) - H'(X) = Z.

The intersection pairing is non-degenerate when torsion elements are factored out. In particular
H'(XQ) x H"'(X;Q) = Q
is a non-degenerate pairing.
Example 25.2. T2 = S! x S1. ¥; = S' x {1},Y, = {1} x S'. Y; N Y; is a point. This is dual to the ring
structure H*(T?) = Z[y1, 2], where 7; is dual to Y;.
Lefschetz Fixed Point Theorem

Let us consider the diagonal A C X x X. Let {¢;} be a basis of He(X; Q), consisting of elements of pure
degree. Let ¢’ be its dual basis of He (X; Q) such that

<el~,ej> = (5{

[A] € Hy(X x X;Q) = P H,(X;Q) @ Hy—p(X;Q)
p

First we observe that

is given by
[A] = Y (—1)desleie; @ .
i
This can be checked by intersecting with a basis of He (X x X; Q).
Let f : X — X be a smooth map. Let

Tpi={(xf(x))[xe X} CXxX
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be the graph of f. Let « € Hy(X), B € H,—,(X). From the geometry of graph, we find
[Tf]-axp= fua-p.
Applying this to [A], we find
[T - 18] = Y (=1l fuei - ' = Y (~1)P Te(fi - Hy(X;Q) = Hy(X;Q))-

i p
Definition 25.3. We define the Lefschetz number of f by

L(f) := 2(—1)‘!7 Tr(fs - Hp(X;Q) — HP(X;Q)).

P

When I’y and A intersects transversely,

#Fix(f) = [Tg] - [A]

gives a signed count of fixed points of the map f. This gives the Lefschetz Fixed Point Theorem

{FiX(f) = L(f).

In particular, if the right hand side is not zero, there must exist a fixed point of f.

Example 25.4. Let 1 be even. Then any map f : CIP" — CIP" has a fixed point. In fact,
f*:H*(CP") — H*(CP")

is a ring map. Let x € H>(CIP") be a generator, let f*(x) = kx for some k € Z. Then

Y ()P Te(filn, cprg) = i}k”

p
is an odd number, hence not zero. By Lefschetz Fixed Point Theorem, f must have a fixed point.

Example 25.5. The Lefschetz number of the identity map id : X — X is precisely the Euler characteristic

L(id) = x(X).
Consider the sphere 52, and the map
+v
;5% §2 S 0=(0,0,1/2).
f — 4 X — |x+v‘/ 4 ( 7Y / )

f has two fixed points: north and south pole, and f is homotopy to the identify. We find
xX(8%) = L(id) = L(f) =2.

Example 25.6. Consider a compact connected Lie group G. Let g € G which is not identity but close to
identity. Then multiplication by ¢ has no fixed point, and it is hompotopic to the identity map. We find

x(G) =0.

154



	Category and Functor
	Fundamental Groupoid
	Covering and fibration
	Classification of covering
	Limit and colimit
	Seifert-van Kampen Theorem
	A Convenient category of spaces
	Group object and Loop space
	Fiber homotopy and homotopy fiber
	Exact Puppe sequence
	Cofibration
	CW complex
	Whitehead Theorem and CW Approximation
	Eilenberg-MacLane Space
	Singular Homology
	Exact homology sequence
	Barycentric Subdivision and Excision
	Cellular homology
	Cohomology and Universal Coefficient Theorem
	Hurewicz Theorem
	Spectral sequence
	Eilenberg-Zilber Theorem and Künneth formula
	Cup and Cap product
	Poincaré duality
	Lefschetz Fixed Point Theorem

