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ABSTRACT. We review some classical and quantum geometry of Calabi-Yau
moduli related to B-model aspects of closed string mirror symmetry. This note
comes out of the author’s lectures in the workshop ”B-model aspects of Gromov-
Witten theory” held at University of Michigan in 2013.
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1. INTRODUCTION

Mirror symmetry is a physics-motivated duality between symplectic geome-
try (or the A-model) and complex geometry (or the B-model). In contrast to the
A-model, Calabi-Yau condition is necessary for a well-defined B-model. In this
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article we discuss several aspects of local geometry on the moduli space in the
B-model related to closed string mirror symmetry, focusing on compact Calabi-
Yau models and Landau-Ginzburg models.

This article consists of two main parts: classical geometry (or the genus zero
theory) and quantum geometry (or the higher genus theory). The geometry
of genus zero theory can be summarized as defining the Frobenius manifold
structure [14] on the local moduli space of Calabi-Yau geometry. It originated
(called the flat structure) around early 1980’s from K. Saito’s theory of primi-
tive forms [32, 33] in his study of period integrals over vanishing cycles associ-
ated to an isolated singularity. This has now become the geometric content of
Landau-Ginzburg B-model encoding the genus zero correlation functions. K.
Saito’s construction was extended by Barannikov and Kontsevich [5] to com-
pact Calabi-Yau models via tools of deformation theory, and packaged into the
framework of variation of semi-infinite Hodge structures [2, 3]. The first part
will be mainly reviewing this classical story. The quantum B-model on Calabi-
Yau manifolds has a candidate in physics via the quantization of a gauge theory
[6] (Kodaira-Spencer gauge theory) whose classical limit describes the deforma-
tion of complex structures. Geometrically, such quantization can be obtained
as the infinite dimensional Weyl quantization with the help of renormalization
techniques in quantum field theory [11]. This is a realization of the topological
B-twisted closed string field theory in the sense of Zwiebach [38]. The second
part will be focused on explaining this subject.

Acknowledgement: The authors would like to thank the organizers and partic-
ipants of the workshop on B-model aspects of Gromov-Witten theory, and the
hospitality of the mathematics department at University of Michigan.

2. CLASSICAL GEOMETRY

2.1. Deformation theory on Calabi-Yau and local moduli. We start with the
deformation theory on Calabi-Yau manifolds via polyvector fields following [5].

2.1.1. Polyvector fields. Let X be a compact Calabi-Yau manifold of dimension d.
ΩX will be a fixed holomorphic volume form which is unique up to a constant.
We consider

PV(X) =
⊕

0≤i, j≤d

PVi, j(X), PVi, j(X) = A0, j(X,∧iTX)
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the space of polyvector fields on X. Here TX is the holomorphic tangent bundle,
and A0, j(X,∧iTX) is the space of smooth (0, j)-forms valued in ∧iTX. PV(X) is
a differential bi-graded commutative algebra: the differential is

∂̄ : PVi, j(X)→ PVi, j+1(X),

and the algebra structure arises from wedge product. Our degree convention is
that elements of PVi, j(X) are of degree j− i. The graded-commutativity says

αβ = (−1)|α||β|βα

where |α|, |β| denote the degree of α,β respectively. ΩX induces an identifica-
tion between the space of polyvector fields and differential forms

PVi, j(X)
yΩX∼= Ad−i, j(X)

α → αyΩX

where y is the contraction, andAi, j(X) denotes smooth differential forms of type
(i, j). The holomorphic de Rham differential ∂ on forms defines an operator on
PV(X) via the above isomorphism, which we still denote by

∂ : PVi, j(X)→ PVi−1, j(X)

i.e.

(∂α)yΩX ≡ ∂(αyΩX), α ∈ PV(X).

The definition of ∂ doesn’t depend on the choice of ΩX on compact Calabi-Yau
manifolds. It induces a bracket on polyvector fields (Bogomolov-Tian-Todorov
lemma)

{α,β} := ∂ (αβ)− (∂α)β− (−1)|α|α(∂β)

which coincides with the Schouten-Nijenhuis bracket (up to a sign). The funda-
mental algebraic structures of polyvector fields on Calabi-Yau geometry can be
summarized by saying that the tuple {(PV(X), ∂̄),∧, ∂, {−,−}} defines a differ-
ential Gerstenhaber-Batalin-Vilkovisky (GBV) algebra.

We can integrate polyvector fields by the trace map Tr : PV(X)→ C

Tr(α) :=
∫

X
(αyΩX) ∧ΩX .(2.1)

This is only non-vanishing on PVd,d(X). Let 〈−,−〉 be the induced pairing
PV(X)⊗ PV(X)→ C

α ⊗β→ 〈α,β〉 ≡ Tr (αβ) .
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It is easy to see that ∂̄ is (graded) skew self-adjoint for this pairing and ∂ is
(graded) self-adjoint.

2.1.2. Deformation of complex structures. We are interested in the moduli space
of complex structures on compact Calabi-Yau manifolds. The main local re-
sult is the smoothness of the moduli space (Bogomolov-Tian-Todorov Theorem),
which is also a direct consequence of the differential GBV structure.

Let us fix a choice of Kähler metric on X. Locally, the deformation space of
complex structure of X can be described by the space

Mcx :=
{
µ ∈ PV1,1(X), ‖µ‖ < ε

∣∣∣∣∂̄µ +
1
2
{µ,µ} = 0, ∂̄

∗µ = 0
}

,

where ε is a sufficiently small number. Let µ1 ∈ H1(X, TX) be a harmonic el-
ement with respect to the Kähler metric. µ1 represents a tangent vector of the
moduli space at the point X, i.e. a first order deformation. It can be extended to
a genuine deformation

µt =
∞
∑
k=1

tkµk ∈ PV1,1(X), |t| << 1

by solving recursively (in order of powers of t)

∂̄µt = −
1
2
{µt,µt}, ∂̄

∗µt = 0,

or equivalently by solving

∂̄µi = −
1
2

i−1

∑
k=1
{µi,µk−i}, i > 1, ∂̄

∗µi = 0.

For a general complex manifold, the harmonic part of the RHS may not be van-
ishing, representing the obstructions for solving the above equation. However,
this does not happen for Calabi-Yau manifolds. Indeed, we can solve µt with
the additional property that ∂µ = 0. Suppose we have solved µk for k < i, with
∂̄∗µk = ∂µk = 0. Bogomolov-Tian-Todorov lemma implies that

{µk,µi−k} = ∂(µk ∧µik),

which has no harmonic component. It follows that µi can be solved by

µi = −
1
2

∂̄
∗G∂(

i−1

∑
k=1
µi ∧µk−i)

which satisfies ∂̄∗µi = ∂µi = 0. Here G = 1
∆ is the Green’s operator for the

Laplacian ∆ = ∂̄∂̄∗ + ∂̄∗∂̄ acting on PV(X). It can be further shown that the
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power series µt is convergent given t sufficiently small. This implies that the lo-
cal deformation of complex structures on Calabi-Yau manifolds is unobstructed.

2.1.3. Extended deformation space and the Formality Theorem. We can consider the
extended deformation spaceM [5] by solving

∂̄µ +
1
2
{µ,µ} = 0

modulo gauge equivalence. Here µ is allowed to be polyvectors of all types. By
the same argument as above, the deformation problem is unobstructed.

Remark 2.1. In this paper, we treatM as a formal graded manifold [5].

In [5], Barannikov and Kontsevich have introduced a remarkable way to or-
ganize the above argument via the Formality Theorem. The deformation problem
is controlled by the differential graded Lie algebra (DGLA)

(PV(X), ∂̄, {, }).

There are two closely related DGLA’s. The first one is

(ker ∂, ∂̄, {, }),

where ker ∂ ⊂ PV(X) is the subspace of polyvector fields annihilated by ∂.
Bogomolov-Tian-Todorov lemma implies that {, } is a well-defined Lie bracket
on ker ∂. In fact,

{, } : ker ∂× ker ∂→ im ∂ ⊂ ker ∂.

The second DGLA is

(H, 0, 0)

where H ⊂ PV(X) is the subspace of harmonic elements. We associate the trivial
differential and Lie bracket. There is a well-defined diagram of morphisms of
DGLA’s

(ker ∂, ∂̄, {, })
j

vv

π

''
(PV(X), ∂̄, {, }) (H, 0, 0)

where j is the natural embedding, and π is the harmonic projection. By Hodge
theory, both j and π induce isomorphisms on the cohomology of the differential
complex, hence quasi-isomorphisms of DGLA’s. Since quasi-isomophisms can
be inverted via L∞ morphisms, we obtain the following Formality Theorem
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Theorem 2.1 ([5]). The DGLA (PV(X), ∂̄, {, }) is L∞ quasi-isomorphic to the DGLA
(H, 0, 0) of its cohomology.

Quasi-isomorphic DGLA’s have equivalent moduli functors. It follows that
the extended deformation space is smooth, being locally parametrized by H.

2.2. Generalized period map and Frobenius manifold structure. There is a line
bundle L overMcx

X whose fiber parametrizes the holomorphic volume forms. It
gives rise to the period map (locally)

Mcx → P(Hn(X,C))

by sending [Xt] ∈ Mcx to the line in Hn(X,C) representing the fiber of L.

Period map here can be viewed as varying the holomorphic volume form
along with the deformation of the complex structure. The choice of the deforma-
tion of the pair (X, ΩX) can be described by a pair (µ,ρ) ∈ PV1,1(X)⊕ PV0,0(X)

as follows. µ defines a deformation of complex structure solving

∂̄µ +
1
2
{µ,µ} = 0.

It is easy to see that eµyΩX is of type (n, 0) in the new complex structure µ. It
differs from the new holomorphic volume form by a factor eρ, which solves the
equation

d(eρeµyΩX) = 0.

This can be also read by

∂̄µ +
1
2
{µ,µ} = 0, ∂̄ρ+ ∂µ + {µ,ρ} = 0,

or simply

Q(µ + zρ) +
1
2
{µ + zρ,µ + zρ} = 0,

where Q = ∂̄ + z∂ and z is a formal parameter.

Barannikov [2,3] extended the period map to the ”generalized period“ on the
extended moduli space M. It can be viewed as the compact Calabi-Yau ana-
logue of Saito’s primitive period map [32] for isolated singularities. We briefly
review his construction here. Consider the new DGLA

(PV(X)[[z]], Q, {, }).

Remark 2.2. The formal variable z is the same as h̄ in [2, 3].
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Notation 2.1. Given a vector space A, A[[z]] (A((z)) respectively) will denote
the formal power series (Laurent series respectively) in z valued in A. A[[u]] will
denote the formal power series in u = {uα} valued in A. If both sets of variables
are involved, the topology is understood as follows: A((z))[[u]] ≡ B[[u]] for
B = A((z)), while A[[u]]((z)) ≡ C((z)) for C = A[[u]], etc.

There exists universal solutions [3] (modulo gauge equivalence)

µ(u, z) = ∑
α

µα(z)uα +
1
2 ∑
α,β
µαβ(z)uαuβ + · · · ∈ PV(X)[[z]][[u]]

to the associated Maurer-Cantan equation

Qµ(u, z) +
1
2
{µ(u, z),µ(u, z)} = 0,

where uα are the deformation parameters as coordinates onM, and µα(z) forms
a C[[z]]-basis of H∗(PV(X)[[z]], Q). It is direct to check that the Maurer-Cantan
equation is formally equivalent to

Qeµ(u,z)/z = 0.

Note that in our notation, eµ(u,z)/z ∈ PV(X)((z))[[u]].

Notation 2.2. Given µ ∈ PV(X)[[z]] with Qµ = 0, we will use [µ] to repre-
sent its cohomology class in H∗(PV(X)[[z]], Q). Similar notations apply to other
cohomologies.

Let us define an isomorphism

ΓΩ : PV(X)((z))→ A(X)((z)), zkα → zk+i−1αyΩX , α ∈ PVi, j(X).(2.2)

It transfers Q to the de Rham differential

ΓΩ ◦Q = d ◦ Γ .

As a result, the universal solutions µ(u, z) defines a cohomology class

ΓΩ(
[

zeµ(u,z)/z
]
) ∈ H∗(X,C)((z))[[u]].

Definition 2.1. For simplicity, let us denote from now on by

S(X) := PV(X)((z)), S+(X) := PV(X)[[z]], S−(X) := z−1 PV(X)[z−1].

Lemma 2.1. Under the isomorphism ΓΩ, we have

ΓΩ(S+(X)) = ∏
p∈Z

zd−p+1FpA(X),
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where FpA(X) = A≥p,∗(X). At the cohomology level we have an isomorphism

ΓΩ : H∗(S+(X), Q)
'→ ∏

p∈Z
zd−p+1FpH∗(X,C).

Similarly

ΓΩ : H∗(S(X), Q)
'→ H∗(X,C)((z)).

Definition 2.2. We define a symplectic pairing on S(X) by

ω( f (z)α, g(z)β) := Resz=0 ( f (z)g(−z)dz) Tr(αβ).

The differential Q is (graded) skew-symmetric with respect to the symplectic
pairingω. Thereforeω descends to define a symplectic pairing on the cohomol-
ogy H∗(S(X), Q), where H∗(S+(X), Q) becomes an isotropic subspace.

Definition 2.3. An opposite filtration of H∗(S(X), Q) is a linear isotropic sub-
space L ⊂ H∗(S(X), Q) such that

(1) H∗(S(X), Q) = H∗(S+(X), Q)⊕L,
(2) L is preserved by the operator z−1 : H∗(S(X), Q)→ H∗(S(X), Q).

The subspaces zkH∗(S+(X), Q) ⊂ H∗(S+(X), Q), k ≥ 0, defines a decreasing
filtration, whose associated graded space is

Gr H∗(S+(X), Q) ∼= H∗(X,∧∗TX)[[z]].

It is easy to see that under ΓΩ, this filtration can be identified with the Hodge fil-
tration, and L is equivalent to an opposite splitting filtration. Given an opposite
filtration L, it defines us a splitting projection

πL+ : H∗(S(X), Q)→ H∗(S+(X), Q),

and an isomorphism of vector spaces

H∗(S+(X), Q)/zH∗(S+(X), Q) ∼= H∗(S+(X), Q) ∩ zL,

which further induces an isomorphism of C[[z]]-modules

Gr H∗(S+(X), Q) ∼= H∗(S+(X), Q).

Definition 2.4. L leads to a choice ofC[[z]]-basis of H∗(S+(X), Q) by H∗(S+(X), Q)∩
zL. We will let {µLα }α denote such a basis that

H∗(S+(X), Q) ∩ zL = SpanC{[µ
L
α ]}.
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Proposition 2.1. Given an opposite filtration L, there exists a universal solution of the
form

µL(τ , z) = ∑
α

µLα τ
α
z +

1
2 ∑
α,β
µαβ(z)ταz τ

β
z + · · · ∈ PV(X)[[z]][[τ ]],

where τ = {τα} are coordinates onM, ταz = τα + O(τ2) ∈ C[[z]][[τ ]] such that

πL+(
[

zeµ
L(τ ,z)/z − z

]
) = ∑

α

µLα τ
α .

Proof. Up to a (z-dependent) linear change of coordinates on u, we can assume
that the universal solution µ(u, z) is of the form

µ(u, z) = ∑
α

µLα uα + O(u2).

Consider the projection

πL+(
[

zeµ(u,z)/z − z
]
) ∈ H∗(S+(X), Q)[[u]].

Since µLα forms a C[[z]]-basis of H∗(S+(X), Q), we can write

πL+(
[

zeµ(u,z)/z − z
]
) = ∑

α

µLα τ
α(u, z)

where
τα(u, z) = uα + O(u2) ∈ C[[z, u]].

In particular, uα can be solved in terms of τα , z by

uα(τ , z) = τα + O(τ2) ∈ C[[z,τ ]].

Then µL(τ , z) = µ(u(τ , z), z). �

In particular, we find the relation[
zeµ

L(τ ,z)/z
]
∈ z +∑

α

[
µLα

]
τα + L[[τ ]],(2.3)

where L = z−1SpanC{
[
µLα
]
}[z−1].

Definition 2.5. [3] Given an opposite filtration L, we define the generalized pe-
riod map

ΠL :M→ H∗(X,C)
as the map of formal (graded) manifolds from (M, 0) to (H∗(X,C), ΩX) by

τα → ΓΩ(
[

zeµ
L(τ ,z)/z

]
)|z=1.

It is easy to see that ΠL is an isomorphism of formal graded manifolds.
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2.2.1. Frobenius manifold structure. Now we explain Barannikov’s formulation
[2, 3] of Frobenius manifold structure onM associated to an opposite filtration.

Definition 2.6. LetH ≡ H∗(S(X), Q), and letH(0)
M ⊂ H[[τ ]] be the freeC[[z]][[τ ]]-

module generated by [z∂τα eµ(τ ,z)/z]. The symplectic pairing ω extends C[[τ ]]-
linearly to

ω : H[[τ ]]⊗C[[τ ]]H[[τ ]]→ C[[τ ]]

which we denote by the same symbol.

Lemma 2.2. H[[τ ]] = H(0)
M ⊕ L[[τ ]]. Moreover, this is an isotropic decomposition,

i.e. ω(H(0)
M ,H(0)

M ) = 0.

Proof. The decompositionH[[τ ]] = H(0)
M ⊕L[[τ ]] follows from (2.3) since

[
z∂τα eµ(τ ,z)/z

]
∈

µLα + L[[τ ]]. To seeH(0)
M is an isotropic subspace,

ω(a(z)z∂τα eµ(τ ,z)/z, b(z)z∂τβeµ(τ ,z)/z)

=Resz=0 Tr(a(z)b(−z)∂ταµ(τ , z)∂τβµ(τ ,−z)e(µ(τ ,z)−µ(τ ,−z))/z)dz.

If a(z), b(z) contains only non-negative powers of z, the expression inside Tr has
only non-negative powers of z whose residue vanishes. �

Lemma 2.3 (Transversality). ∂τα : H(0)
M → z−1H(0)

M .

Proof. By Lemma 2.2, we only need to show thatω(z∂ταH(0)
M ,H(0)

M ) = 0, which
follows from a similar calculation as in Lemma 2.2. �

Corollary 2.1. There exists Aγαβ(τ) ∈ C[[τ ]] such that

(∂τα∂τβ − z−1 Aγαβ(τ)∂τγ )
[
eµ(τ ,z)/z

]
= 0.

Proof. By Equation (2.3) and Lemma 2.2, [z∂τα eµ(τ ,z)/z] forms a C[[τ ]]-basis of
H(0)
M ∩ zL[[τ ]]. By Equation (2.3) and Lemma 2.3,

z∂τβ [z∂τα eµ(τ ,z)/z] ∈ H(0)
M ∩ zL[[τ ]],

hence a C[[τ ]]-linear combination of {[z∂τα eµ(τ ,z)/z]}α. �

The following corollary is a direct consequence.

Corollary 2.2. The generalized period satisfies

(∂τα∂τβ − Aγαβ(τ)∂τγ )Π
L = 0.
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Let us define a metric by

gαβ :=ω(∂τα eµ(τ ,z)/z, z∂τβeµ(τ ,z)/z).

Lemma 2.4. gαβ is a non-degenerate constant matrix.

Proof. It follows from Equation (2.3) that gαβ = Tr(µLα ∧µLβ ). �

Corollary 2.3. Let Aαβγ(τ) := ∑δ Aδαβ(τ)gδγ. Then Aαβγ(τ) is (graded) symmetric
inα,β,γ.

Proof. This follows from ∂γgαβ = 0. �

Lemma 2.5. Aγαβ(τ) ∈ C[[τ ]] satisfies the WDVV equation.

Proof. Define the Dubrovin connection

∇τα = ∂τα − z−1 Aα ,

where Aα is the C[[z]][[τ ]]-linear transformation onH(0)
M defined on the basis by

Aα :
[

z∂τβeµ(τ ,z)/z
]
→∑

γ

Aγαβ
[

z∂τγ eµ(τ ,z)/z
]

.

Then ∇
[

z∂τα eµ(τ ,z)/z
]
= 0 on the basis. The WDVV equation is equivalent to

∇2 = 0, which follows from the curvature condition. �

The properties above can be summarized as follows. The triple (∂τα , Aγαβ, gαβ)
defines a (formal) Frobenius manifold structure on M, with τα being the flat
coordinates. In particular, there exists a function FL0 (τ) satisfying

Aαβγ(τ) = ∂τα∂τβ∂τγFL0 (τ).

There also exists the Euler vector field and identity vector field.

FL0 (τ) is called the prepotential, encoding the genus zero correlation func-
tions in the Calabi-Yau B-model. It depends on the choice of the opposite fil-
tration L. When X is around the large complex limit, the degeneration leads
to an opposite Monodromy weight filtration, and FL0 (τ) is identified with the
genus zero Gromov-Witten invariants of the mirror Calabi-Yau for a large class
of examples [3, 17, 29].
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2.3. Landau-Ginzburg model. Now we move to the Landau-Ginzburg B-model.
We will focus on an isolated singularity defined by a weighted homogeneous
polynomial

f : X = Cn → C, f (λq1 x1, · · · , λqn xn) = λ f (x1, · · · , xn).

qi are called the weights of xi, and the central charge of f is defined by

ĉ f = ∑
i
(1− 2qi).

Associated to f , K. Saito has introduced the concept of a primitive form [32],
which induces a Frobenius manifold structure (originally called a flat structure)
on the local universal deformation space of f . The construction of primitive
forms for arbitrary isolated singularities is later fully established by M. Saito
[35]. See also [4, 12, 13, 37] for generalizations to certain class of Laurent poly-
nomials. This gives rise to the genus zero correlation functions in the Landau-
Ginzburg B-model. The generalized period map for compact Calabi-Yau mani-
folds can be viewed as the analogue of primitive period map.

In this rest of this section, we will give a brief review of primitive forms. Our
presentation will base on the work [21], which exhibits a unified geometry of
Landau-Ginzburg and Calabi-Yau models. We will also describe the perburba-
tive formula of primitive forms [21] which is fully developed in [22,27] to prove
the mirror symmetry conjecture between Landau-Ginzburg models.

2.3.1. Universal unfolding. The DGLA controlling the deformation theory has a
natural twisting in the Landau-Ginzburg case(

PV(X), ∂̄ f , {, }
)

, ∂̄ f = ∂̄ + dfy,

where dfy is the contraction with the holomorphic 1-form df . We will be also
working with a subcomplex

PVc(X) ⊂ PV(X)

of polyvector fields with compact support. Since X = Cn is Stein, we have

Lemma 2.6. The embedding (PVc(X), ∂̄ f ) ↪→ (PV(X), ∂̄ f ) is quasi-isomorphic. The
cohomology is given by

H∗(PV(X), ∂̄ f ) ∼= Jac0( f ),

where Jac0( f ) = C{xi}/{∂i f } is the Milnor ring of the isolated singularity.
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It follows that in the Landau-Ginzburg case, the universal solutions of the
associated Maurer-Cartan equation is greatly simplified, and can be represented
as a deformation of f (x) via the universal unfolding:

F : Cn ×Cµ → C, F(x, s) := f (x) +
µ

∑
α=1

sαφα(x), s = (s1, · · · , sµ).

where µ = dimC Jac0( f ), and {φα(x)} is a basis of Jac0( f ).

In the case f being weighted homogenous, we can further assume thatφα are
all weighted homogeneous with increasing degrees

0 = deg(φ1) ≤ deg(φ2) ≤ · · · ≤ deg(φµ) = ĉ f , where deg(xi) = qi.

We will extend our weight degree assignment to the deformation parameter

deg(sα) := 1− deg(φα)

such that F becomes weighted homogeneous of total degree 1. Let us denote by

M := (Cµ , 0)

the germ around 0 ∈ Cµ, parametrizing the local deformation space. {sα} is
viewed as a coordinate system onM.

Let Ω := dx1 ∧ · · · ∧ dxn be our fixed holomorphic volume form. Let Ωk
X,0 be

the germ of holomorphic k-forms at 0.

Definition 2.7. Ω f := Ωn
X,0/df ∧Ωn−1

X,0 .

With our choice of Ω, we can identify

Jac0( f )→ Ω f , [φ]→ [φΩ].

There exists a classical residue pairing defined on Ω f :

η f : Ω f ⊗Ω f → C.

This has an alternate geometric description as follows. Recall the trace map

Tr : PVc(X)→ C, µ →
∫

X
µyΩ ∧Ω

is well-defined on PVc(X). It is easy to see that it descends to cohomologies

Tr : H∗(PVc(X), ∂̄ f )→ C.

Proposition 2.2. [21] Let ι : H∗(PVc(X), ∂̄ f ) → H∗(PV(X), ∂̄ f ) denote the isomor-
phism as in Lemma 2.6. Then the residue pairing is related to the trace map by

η f ([φ1Ω], [φ2Ω]) = Tr(ι−1([φ1]) ∧ ι−1([φ2])), ∀[φi] ∈ Jac0( f ).
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2.3.2. Brieskorn lattice and higher residues. Analogous to the Calabi-Yau case, we
consider the following extended DGLA

(PV(X)[[z]], Q f , {, }), Q f := ∂̄ f + z∂Ω,

where ∂Ω is defined with respect to the volume form Ω.

Definition 2.8. [33] Define H(0)
f := Ωn

X,0[[z]]/(df + zd)Ωn−1
X,0 the (formally com-

pleted) Brieskorn lattice associated to f .

Lemma 2.7. [21] The embedding (PVc(X)[[z]], Q f ) ↪→ (PV(X)[[z]], Q f ) is a quasi-
isomorphism. It induces isomorphisms

H∗(PV(X)[[z]], Q f ) ∼= H0(PV(X)[[z]], Q f )
zΓΩ∼= H(0)

f ,

where ΓΩ is defined the same as in (2.2).

There is a similar semi-infinite Hodge filtration on H(0)
f given by H(−k)

f :=

zkH(0)
f , with graded pieces

H(−k)
f /H(−k−1)

f
∼= Ω f .

In particular, H(0)
f is a free C[[z]]-module of rank µ. We will also denote the

extension to Laurent series by

H f := H(0)
f ⊗C[[z]] C((z)).

There is a natural Q-grading onH(0)
f defined by assigning the weight degrees

deg(xi) = qi, deg(dxi) = qi, deg(z) = 1.

For a homogeneous element of the formϕ = zkg(xi)dx1 ∧ · · · ∧ dxn, we define

deg(ϕ) = deg(g) + k +∑
i

qi.

In [33], K. Saito constructed a higher residue pairing

K f : H(0)
f ⊗H

(0)
f → znC[[z]]

which satisfies the following properties

(1) K f is equivariant with respect to the Q-grading, i.e.,

deg(K f (α,β)) = deg(α) + deg(β)

for homogeneous elementsα,β ∈ H(0)
f .

(2) K f (α,β) = (−1)nK f (β,α), where the − operator takes z→ −z.
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(3) K f (v(z)α,β) = K f (α, v(−z)β) = v(z)K f (α,β) for v(z) ∈ C[[z]].
(4) The leading z-order of K f defines a pairing

H(0)
f /zH(0)

f ⊗H
(0)
f /zH(0)

f → C, α ⊗β 7→ lim
z→0

z−nK f (α,β)

which coincides with the usual residue pairing

η f : Ω f ⊗Ω f → C.

The last property implies that K f defines a semi-infinite extension of the residue
pairing, which explains the name “higher residue”. An alternate way to un-
derstand the higher residue pairing is through the trace map in the spirit of
Proposition 2.2. Let us define a pairing

K̃ f : PVc(X)[[z]]×PVc(X)[[z]]→ znC[[z]], K̃ f ( f (z)α, g(z)β) = zn f (z)g(−z) Tr(αβ).

It is easy to see that K̃ f descends to H∗(PVc(X)[[z]], Q f ) which is canonically
isomorphic to H∗(PV(X)[[z]], Q f ).

Proposition 2.3. [21] K̃ f coincides with K f under the isomorphism H∗(PV(X)[[z]], Q f ) ∼=
H(0)

f as in Lemma 2.7.

The Brieskorn lattice and the higher residue pairing can be extended to the
family case on the germM associated to the unfolding F. We have

H(0)
F := Ωn

X×M/M,0[[z]]/(dF + zd)Ωn−1
X×M/M,0

where Ω∗X×M/M,0 is the germ of the sheaf of relative holomorphic differential

forms at 0. It can be viewed as a free sheaf of rank µ on M× ∆̂, where ∆̂ is
the formal disk with parameter z. H(0)

F is equipped with a flat Gauss-Manin
connection onM× ∆̂, denoted by ∇GM. The higher residue pairing extends to

KF : H(0)
F ⊗OM H

(0)
F → znOM[[z]]

satisfying the following properties

(1) KF(s1, s2) = (−1)nKF(s2, s1), where − is the operator z→ −z.
(2) KF(g(z)s1, s2) = KF(s1, g(−z)s2) = g(z)KF(s1, s2) for any g ∈ OM[[z]].
(3) ∂VKF(s1, s2) = KF(∇GM

V s1, s2) + KF(s1,∇GM
V s2) for any V ∈ TM.

(4) z∂zKF(s1, s2) = KF(∇GM
z∂z s1, s2) + KF(s1,∇GM

z∂z
s2).

(5) The induced pairing

H(0)
F /zH(0)

F ⊗OM H
(0)
F /zH(0)

F → OM

coincides with the classical residue pairing.
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2.3.3. Primitive forms.

Definition 2.9. A section ζ ∈ H(0)
F is called a primitive form if it satisfies the

following conditions:

(1) (Primitivity) The section ζ induces an OM-module isomorphism

z∇GMζ : TM → H(0)
F /zH(0)

F ; V 7→ z∇GM
V ζ .

(2) (Orthogonality) For any local sections V1, V2 of TM,

KF
(
∇GM

V1
ζ ,∇GM

V2
ζ
)
∈ zn−2OM.

(3) (Holonomicity) For any local sections V1, V2, V3 of TM,

KF
(
∇GM

V1
∇GM

V2
ζ ,∇GM

V3
ζ
)
∈ zn−3OM ⊕ zn−2OM;

KF
(
∇GM

z∂z
∇GM

V1
ζ ,∇GM

V2
ζ
)
∈ zn−3OM ⊕ zn−2OM.

(4) (Homogeneity) There is a constant r ∈ C such that(
∇Ω

z∂z
+∇Ω

E

)
ζ = rζ .

where E is the Euler vector field. In the case of weighted homogeneous
singularity, we have r = ∑i qi.

The space of primitive forms has a geometric description. Let us extend the
higher residue pairing to

K f : H f ⊗H f → C((z)).

This defines a symplectic pairingω f onH f by

ω f (α,β) := Resz=0 z−nK f (α,β)dz,

withH(0)
f being an isotropic subspace. Following [32],

Definition 2.10. A good section σ is a splitting of the quotientH(0)
f → Ω f :

σ : Ω f → H
(0)
f ,

such that: (1) σ preserves the Q-grading; (2) K f (Im(σ), Im(σ)) ⊂ znC. A basis

of the image Im(σ) of a good section σ will be called a good basis ofH(0)
f .

Definition 2.11. A good opposite filtration L is defined by a splitting

H f = H
(0)
f ⊕L

such that: (1) L preserves the Q-grading; (2) L is an isotropic subspace; (3) z−1 :
L → L.
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Remark 2.3. Here for f being weighted homogeneous, (1) is equivalent to the
conventional condition that ∇GM

z∂z
preserves L (see e.g. [21] for an exposition).

The above two definitions are equivalent. In fact, a good opposite filtration L
defines the splitting σ : Ω f

∼=→ H(0)
f ∩ zL. Conversely, a good section σ gives

rise to the good opposite filtration L = z−1 Im(σ)[z−1]. As shown in [32,35], the
primitive forms associated to weighted homogeneous singularities are in one-
to-one correspondence with good sections (up to a nonzero scalar). We remark
that for general isolated singularities, we need the notion of very good sections
[35, 36] in order to incorporate with the monodromy.

Theorem 2.2. [32] The space of primitive forms of f up to rescaling by a constant is
isomorphic to the space of good sections.

Remark 2.4. The generalization of this identification to arbitrary isolated singu-
larities is established by M. Saito [35, 36].

2.4. Perturbative theory of primitive forms. In this subsection, we describe the
algebraic algorithm [21, 22] to compute the primitive form, flat coordinates and
the prepotential with respect to a good basis.

We start with a good basis {[φαΩ]}µα=1 of H(0)
f , where {φα}µα=1 are weighted

homogeneous polynomials in C[x] that represent a basis of Jac0( f ) andφ1 = 1.

2.4.1. The exponential map. Let F be a local universal unfolding of f (x)

F(x, s) := f (x) +
µ

∑
α=1

sαφα(x), s = (s1, · · · , sµ).

Let B := SpanC{[φαΩ]} ⊂ H(0)
f be spanned by the chosen good basis. Then

H(0)
f = B[[z]], H f = B((z)).

Let BF := SpanC{φαΩ} be the vector space spanned by the forms φαΩ. We
use a different notation to distinguish it with B, since BF should be viewed as a
subspace of the Brieskorn lattice for the unfolding F. See [21,22] for more details.
Consider the following exponential operator [21, 22]

e(F− f )/z : BF → B((z))[[s]]

defined as a C-linear map on the basis of BF as follows. Let

C[s]k := Symk(SpanC{s1, · · · , sµ})
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denote the space of k-homogeneous polynomial in s (not to be confused with
the weighted homogeneous polynomials). As elements in H f ⊗ C[s]k, we can
decompose

[z−k(F− f )kφαΩ] = ∑
m≥−k

∑
β

h(k)αβ,mzm[φβΩ],

where h(k)αβ,m ∈ C[s]k. Then we define

e(F− f )/z(φαΩ) :=
∞
∑
k=0

∑
β

∑
m≥−k

h(k)αβ,m
zm

k!
[φβΩ] ∈ B((z))[[s]].

The exponential map extends to a C((z))[[s]]-linear isomorphism

e(F− f )/z : BF((z))[[s]]→ B((z))[[s]],

which plays the role of parallel transport with respect to the Gauss-Manin con-
nection. Let

K f : B((z))[[s]]× B((z))[[s]]→ C((z))[[s]]

also denote the C[[s]]-linear extension of the higher residue pairing toH f [[s]].

Lemma 2.8. [21, 22] For anyϕ1,ϕ2 ∈ BF, we have

K f (e(F− f )/zϕ1, e(F− f )/zϕ2) ∈ znC[[z, s]]

In particular, e(F− f )/z maps BF[[z]] to an isotropic subspace ofH f [[s]].

Theorem 2.3. [21,22] Given a good basis {[φαdnx]}µα=1 ⊂ H
(0)
f , there exists a unique

pair (ζ ,J ) satisfying the following: (1)ζ ∈ BF[[z]][[s]], (2)J ∈ [Ω]+ z−1B[z−1][[s]] ⊂
H f [[s]], and

(?) e(F− f )/zζ = J .

Moreover, both ζ and J are homogeneous of weight ∑i qi.

This is the analogue of (2.3) for Calabi-Yau. ζ(s) can be solved recursively
with respect to the order in s. We refer to [22] for details, and to [21] for a com-
pact formula of this algorithm. The decomposition is a formal solution of the
Riemann-Hilbert-Birkhoff problem for primitive forms [32]. The volume form

ζ =
∞
∑

k=0
∑
α
ζα(k)[φαΩ] gives the power series expansion of a representative of the

primitive form associated to the good basis {[φαdnx]}µα=1.
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2.4.2. Flat coordinates and potential function. Let (ζ ,J ) be the unique solution of
(?). ζ represents the power series expansion of a primitive form. However for
the purpose of mirror symmetry, it is more convenient to work with J , which
plays the role of Givental’s J-function (see [16] for an introduction). This allows
us to read off the flat coordinates and the potential function of the associated
Frobenius manifold structure.

With the embedding z−1C[z−1][[s]] ↪→ z−1C[[z−1]][[s]], we decompose

J = [dnx] +
−∞
∑

m=−1
zmJm, where Jm = ∑

α

J αm [φαΩ],J αm ∈ C[[s]].

We denote the z−1-term by

tα(s) := J α−1(s).

It is easy to see that tα = sα + O(s2) and is homogeneous of the same weight
as sα. Therefore tα defines a set of new homogeneous local coordinates on the
(formal) deformation space of f .

Proposition 2.4. The function J = J (s(t)) in coordinates tα satisfies

∂tα∂tβJ = z−1
∑
γ

Aγαβ(t)∂tγJ

for some homogeneous Aγαβ(t) ∈ C[[t]] of weighted degree degφα+degφβ−degφγ.
Moreover, for anyα,β,γ, δ,

∂tα Aδβγ = ∂tβAδαγ , ∑
σ

AδασAσβγ = ∑
σ

AδβσAσαγ

Lemma 2.9. In terms of the coordinates tα, we have

K f (z∂tαJ , z∂tβJ ) = zngαβ.

Here gαβ is the constant equal to the residue pairing η f (φαΩ,φβΩ).

Similarly, the triple (∂tα , Aγαβ, gαβ) defines a (formal) Frobenius manifold struc-
ture on a neighborhood S of the origin with {tα} being the flat coordinates, to-
gether with the potential function F0(t) satisfying

Aαβγ(t) = ∂tα∂tβ∂tγF0(t).

It is not hard to see that F0(t) is homogeneous of degree 3− ĉ f . The potential
function F0(t) can also be computed perturbatively.

Remark 2.5. ζ is in fact an analytic primitive form [21]. Therefore, both tα and
F0(t) are analytic functions of s at the germ s = 0.
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Remark 2.6. The closed formula of primitive forms for weighted homogenous
singularities only exists for ADE (ĉ f < 1) and simple elliptic singularities ĉ f = 1
[32]. They can be easily obtained via the perburbative method [21]. For ĉ f > 1,
expressions of primitive forms are unknown and this has become long one of
the major obstacles toward understanding mirror symmetry between Landau-
Ginzburg models. It turns out that the perturbative formula, together with the
WDVV equation, is enough to compute the full data of the Landau-Ginzburg B-
model. The first non-trivial examples are Arnold’s unimodular exceptional sin-
gularities, whose mirror symmetry with FJRW-theory [15] (Landau-Ginzburg A-
model) is established [22] via the perburbative method. Such mirror symmetry
between singularity theories is fully established in [27] for almost all weighted
homogeneous polynomials when Landau-Ginzburg mirrors exist.

3. QUANTUM GEOMETRY

In this section, we will quantize the symplectic structure that appears in the
previous section for the generalized period maps, or the primitive forms. We
analyze Givental’s symplectic loop space formalism in the context of B-model
geometry, and explain the Fock space construction via the renormalization tech-
niques of gauge theory. It leads to the quantum BCOV theory developed in
[11]. This is parallel to another categorical approach [9, 10, 28] to the quantum
B-model associated to a Calabi-Yau categories of D-branes. Our quantum field
theory approach has the advantage of manifest physics intuitions and is related
to methods of background symmetries and integrable hierarchies.

3.1. A toy model of Weyl quantization.

3.1.1. Weyl algebra and Fock space. Let us recall the construction of the Fock mod-
ule for a finite dimensional dg symplectic vector space (V,ω, d), whereω is the
symplectic pairing on V, and d is the differential which is skew self-adjoint with
respect toω. Let

W(V) := ∏
n≥0

(V∗)⊗n[[h̄]]/ ∼

be the (formal) Weyl algebra of V, which is the pro-free dg algebra generated by
the linear dual V∗ and a formal parameter h̄, subject to the relation

[a, b] ∼ h̄ω−1(a, b), ∀a, b ∈ V∗.

Here ω−1 ∈ ∧2V is the inverse of ω, and [a, b] := a ⊗ b ∓ b ⊗ a is the graded
commutator in the tensor algebra generated by V∗. Let V+ be a Lagrangian



SOME CLASSICAL / QUANTUM ASPECTS OF CALABI-YAU MODULI 21

subcomplex of V, and Ann(V+) ⊂ V∗ be the annihilator of V+. Then the Fock
module Fock(V+) is defined to be the quotient

Fock(V+) :=W(V)/W(V)Ann(V+).

Since V+ is preserved by the differential, Fock(V+) naturally inherits a dg struc-
ture from d. We will denote it by d̂.

Let us choose a complementary linear Lagrangian subspace V− ⊂ V such that

V = V+ ⊕V−.

V− may not be preserved by the differential. It allows us to formally identify

V ∼= T∗(V+)

Let

O(V+) = ∏
n≥0

Symn(V∗+)

be the space of formal functions on the graded vector space V+. V− defines a
splitting of the map V∗ → V∗+, hence a morphism

O(V+)[[h̄]] //

∼=

''

W(V)

��
Fock(V+)

which identifies the Fock module with the algebraO(V+)[[h̄]]. The differential d̂
can be described as follows. Let π+ : V → V+ be the projection corresponding to
the splitting V = V+ ⊕V−. Consider (d⊗ 1)ω−1, which is an element of V ⊗V.
Let P be the projection

P = π+ ⊗ π+
(
(d⊗ 1)ω−1

)
∈ V+ ⊗V+

and it is easy to see that P ∈ Sym2(V+). Let ∂P : O(V+) → O(V+) be the
operator of contracting with P

∂P : Symn(V∗+)→ Symn−2(V∗+).

Lemma 3.1. Under the isomorphism Fock(V+) ∼= O(V+)[[h̄]], d̂ takes the form

d̂ = d + h̄∂P

where d here is the induced differential on O(V+) from d on V+.
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∂P will be called a BV operator. It induces a bracket on O(V+) by

{Φ1, Φ2}P := ∂P(Φ1Φ2)− (∂PΦ1)Φ2 − (−1)|Φ1|Φ1∂PΦ2, Φi ∈ O(V+).

Here |Φ| is the cohomology degree of Φ. We will also need a slightly larger Fock
space given by

Fock+(V+) :=
∞
∏
k=0

( ⊕
m≥0,n∈Z
m+2n=k

Symm(V∗+)h̄
n),

i.e. we allow negative powers of h̄ in an appropriate topology.

3.1.2. Langrangian and quantization. In the classical geometry, we are interested
in a Langragian submanifold L of V. Under the isomorphism

V ∼= T∗(V+),

L can be represented (locally) as a graph L = Graph(dF0). We impose a sym-
metry condition that d is tangent to L, where we treat d as defining a nilpotent
vector field on V. This can be viewed as an infinitesimal gauge symmetry.

Lemma 3.2. d being tangent to L is equivalent to the following equation for F0

dF0 +
1
2
{F0, F0}P = 0.

This is called the classical master equation. It says that d + {F0,−}P defines a
new nilpotent vector field on V+. Geometrically, let

π+|L : L → V+.

Then d + {F0,−}P = (π+|L)∗(d) is the push-forward of the vector field d on L.

In the quantum theory, we are interested in a vector |F〉 ∈ Fock+(V+) satis-
fying the “gauge invariance condition”: d|F〉 = 0. To relate |F〉 to L in the h̄→ 0
classical limit, we consider |F〉 of the form represented by eF/h̄

|F〉 ↔ eF/h̄, F = ∑
g≥0

h̄gFg ∈ O(V+)[[h̄]].

By Lemma 3.1, the gauge invariance becomes (d + h̄∂P)eF/h̄ = 0, or equivalently

(d + h̄∂P)F +
1
2
{F, F}P = 0.(3.1)

This is called the quantum master equation.

In summary of our toy model, the quantization scheme quantizes the La-
grangian L to a state |F〉 in the Fock space. Equivalently, it quantizes F0 which
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satisfies the classical master equation to F = F0 + h̄F1 + · · · which satisfies the
quantum master equation.

3.2. Symlectic geometry and BCOV theory. Following Givental’s symplectic
formulation [18, 19] of Gromov-Witten theory in the A-model and the parallel
Barannikov’s work [1, 3] in the B-model, our dg symplectic vector space is (note
that our degree assignment in this article differs from that in [11])

S(X) = PV(X)((z)),

with differential Q = ∂̄ + z∂ and symplectic pairingω by Definition 2.2.

In [6], Bershadsky, Cecotti, Ooguri and Vafa introduced a gauge theory for
polyvector fields on Calabi-Yau three-folds. This is further extended to arbitrary
Calabi-Yau manifolds in [11]. The space of fields of the BCOV theory is

S+(X) ≡ PV(X)[[z]]

which is a linear isotropic subspace of S(X). The classical action functional of the
BCOV theory can be constructed from the following Lagrangian (the embedding
is in the sense of formal scheme via functor of points on Artinian rings [11])

LX =
{

z(eµ/z − 1)|µ ∈ S+(X)
}
⊂ S(X).

This can be viewed as the lifting of that in Proposition 2.1 to the cochain level.
The geometry of LX can be described by the following

Lemma 3.3 ([11]). LX is a formal Lagrangian submanifold of S(X), preserved by the
differential Q = ∂̄ + z∂. Moreover, LX + z is a Lagrangian cone preserved by the
infinitesimal symplectomorphism of S(X) given by multiplying by z−1.

Remark 3.1. LX + z is called the dilaton shift of LX [18].

Consider the splitting

S(X) = S+(X)⊕ S−(X)(3.2)

where recall S−(X) = z−1 PV(X)[z−1]. It allows us to formally identify

S(X) ∼= T∗(S+(X)).

The generating functional FLX is a formal function on S+(X) such that

LX = Graph(dFLX ).

The explicit formula is worked out in [11]
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Proposition 3.1 ([11]). FLX (µ) = Tr 〈eµ〉0, where

〈−〉0 : Sym(PV(X)[[z]])→ PV(X)

is given by intersection of ψ-classes over the moduli space of marked rational curves〈
α1zk1 , · · · ,αnzkn

〉
0

:= α1 · · ·αn

∫
M0,n

ψk1
1 · · ·ψ

kn
n =

(
n− 3

k1, · · · , kn

)
α1 · · ·αn

Definition 3.1 ([11]). The classical BCOV interaction is defined to be the formal
local functional on S+(X) given by FLX .

Remark 3.2. Our definition of BCOV interaction extends the original Kodaira-
Spencer interaction in [6] by turning on the ”gravitational descendants” z. It is
also equivalent to that used by Losev-Shadrin-Shneiberg [30] in the discussion
of finite dimensional toy models of Hodge field theory.

We can transfer the geometry of the Lagrangian LX into properties of FLX .

Proposition 3.2 ([11]). FLX satisfies the classical master equation

QFLX +
1
2
{FLX , FLX} = 0

where Q is the induced derivation on the functionals of S+(X), and {−,−} is the Pois-
son bracket on local functionals induced from the distribution representing the operator
∂ (see Remark 3.3).

This is equivalent to that LX is preserved by Q (See Lemma 3.2 for an explana-
tion in the toy model). The classical master equation implies that Q+ {FLX ,−} is
a nilpotent operator acting on local functionals. In physics terminology, it gener-
ates the gauge symmetry, and defines the gauge theory in the Batalin-Vilkovisky
formalism.

3.3. Givental’s formalism via renormalization. The dg symplectic vector space
related to the BCOV theory is (S(X),ω, Q). If we run the machine to construct
the Fock space as in the previous section, we immediately run into trouble:
PV(X) is infinite dimensional! This is a well-known phenomenon in quantum
field theory, which is related to the difficulty of ultra-violet divergence. The stan-
dard way of solving this is to use the renormalization technique. We will follow
the approach developed in [8].
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3.3.1. Functionals on the fields. Let S+(X)⊗n be the completed projective tensor
product of n copies of S+(X). It can be viewed as the space of smooth polyvector
fields on Xn with a formal variable z for each factor. Let

O(n)(S+(X)) = Hom
(

S+(X)⊗n,C
)

Sn

denote the space of continuous linear maps (distributions), and the subscript Sn

denotes taking Sn coinvariants. O(n)(S+(X)) will be the space of homogeneous
degree n functionals on the space of fields S+(X), playing the role of Symn(V∗)
in our toy model. We will also let

O(n)
loc (S+(X)) ⊂ O(n)(S+(X))

be the subspace of local functionals, i.e. those of the form given by the integra-
tion of a lagrangian density ∫

X
L(µ), µ ∈ S+(X).

Definition 3.2. The algebra of functionals O(S+(X)) on S+(X) is defined to be

O(S+(X)) = ∏
n≥0
O(n)(S+(X))

and the space of local functionals is defined to be the subspace

Oloc(S+(X)) = ∏
n≥0
O(n)

loc (S+(X))

3.3.2. Effective Fock Space. Let g be a Kähler metric on X. Let

Kg
L ∈ PV(X)⊗ PV(X), L > 0

be the heat kernel for the operator e−L[∂̄,∂̄∗], where ∂̄∗ is the adjoint of ∂̄ with
respect to the metric g and

[
∂̄, ∂̄∗

]
= ∂̄∂̄∗ + ∂̄∗∂̄ is the Laplacian acting on PV(X).

It is a smooth polyvector field on X× X defined by the equation(
e−L[∂̄,∂̄∗]α

)
(x) =

∫
X

(
Kg

L(x, y)α(y) ` ΩX(y)
)
∧ΩX(y)

where we have chosen coordinates (x, y) on X × X, and we integrate over the
second copy of X using the trace map.

Definition 3.3. The effective inverse ω−1
g,L for the symplectic form ω is defined

to be the kernel

ω−1
g,L = ∑

k∈Z
Kg

L(−z)k ⊗ z−k−1 ∈ S(X)⊗ S(X), L > 0.
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Note that lim
L→0

Kg
L is the delta-function distribution, which is no longer a smooth

polyvector field, hence not an element of S(X)⊗ S(X). ω−1
g,L can be viewed as

the regularization ofω−1 in the infinite dimensional setting.

Let S(X)∗ be the continuous linear dual of S(X) (distributions on S(X) with
extra care on the z-adic topology. See [11] for more details).

Definition 3.4. The effective Weyl algebra W(S(X), g, L) is the quotient of the
completed tensor algebra (

∏
n≥0

(S(X)∗)⊗n

)
⊗C[[h̄]]

by the topological closure of the two-sided ideal generated by

[a, b]− h̄
〈
ω−1

g,L, a⊗ b
〉

, L > 0

for a, b ∈ S(X)∗. Here 〈, 〉 is the natural pairing between S(X) and its dual.

Similarly, the Fock space can also be defined using the regularized kernelω−1
g,L.

Definition 3.5. The effective Fock space Fock (S+(X), g, L) is the quotient of
W(S(X)) by the left ideal generated topologically by the subspace

Ann(S+(X), g, L) ⊂ S(X)∗.

Similar to the finite dimentional case, the splitting S(X) = S+(X) ⊕ S−(X)

gives the identification

Fock (S+(X), g, L) ∼= O(S+(X))[[h̄]].

We refer to [11] for detailed discussions.

3.3.3. Effective BV formalism. We would like to understand the quantized oper-
ator Q̂L for Q acting on the Fock space represented by the above identification.
This is completely similar to the toy model. Let

(∂⊗ 1)Kg
L ∈ Sym2(PV(X))

be the kernel for the operator ∂e−L[∂̄,∂̄∗]. It can be viewed as the projection of
(Q⊗ 1)ω−1

L,g ∈ Sym2(S(X)) to Sym2(S+(X)).

Definition 3.6. We define the effective BV operator

∆L : O(S+(X))→ O(S+(X))

as the operator of contracting with the smooth kernel (∂⊗ 1)Kg
L.
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Since ∆L : O(n)(S+(X))→ O(n−2)(S+(X)), it could be viewed as an order two
differential operator on the infinite dimensional vector space S+(X). Note that
∆L has odd cohomology degree, and (∆L)

2 = 0. It defines a Batalin-Vilkovisky
structure on O(S+(X)), with the Batalin-Vilkovisky bracket defined by

{S1, S2}L = ∆L (S1S2)− (∆LS1) S2 − (−1)|S1|S1 (∆LS2) , L > 0.

Remark 3.3. If S1, S2 ∈ Oloc(E(X)), then lim
L→0
{S1, S2}L is well-defined, which is

precisely the Poisson bracket in Proposition 3.2.

Proposition 3.3 ([11]). Under the isomorphismFock (S+(X), g, L) ∼= O(S+(X))[[h̄]],
the induced differential Q̂L is Q̂L = Q + h̄∆L.

The proof is similar to Lemma 3.1.

3.3.4. Renormalization group flow and homotopy equivalence. We need to specify
a choice of the metric g and a positive number L > 0 to construct the Fock
space Fock (S+(X), g, L). However, we are in a bit better situation. The general
machinery of renormalization theory in [8] allows us to show that the effective
Fock spaces are independent of the choice of g and L up to homotopy. This is
discussed in detail in [11]. We will discuss here the homotopy between different
choices of the scale L, which is related to the renormalization group flow in
quantum field theory.

Definition 3.7. The effective propagator is defined to be the smooth kernel

PL
ε =

∫ L

ε
du(∂̄∗∂⊗ 1)Kg

u ∈ Sym2(PV(X)), L > ε > 0(3.3)

representing the operator ∂̄∗∂e−L[∂̄,∂̄∗].

Lemma 3.4. As an operator on O(S+(X))[[h̄]],

Q̂L = eh̄∂PL
ε Q̂εe−h̄∂PL

ε

where ∂PL
ε

: O(E(X))→ O(E(X)) is the contraction by the smooth kernel PL
ε .

It follows from this lemma that eh̄∂PL
ε defines the homotopy

eh̄∂PL
ε : (O(S+(X))[[h̄]], Q + h̄∆ε)→ (O(S+(X))[[h̄]], Q + h̄∆L)

between Fock spaces defined at scales ε and L. It defines a flow on the space of
functionals on the fields, which is called the renormalization group flow in [8]
following the physics terminology.
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Proposition 3.4 ([11]). The cohomology H∗(Fock(S+(X), g, L), Q̂L) is independent
of g and L. There are canonical isomorphisms

H∗(Fock(S+(X), g, L), Q̂L) ∼= Fock (H∗(S+(X), Q))

whereFock (H∗(S+(X), Q)) is the Fock space for the Lagrangian subspace H∗(S+(X), Q)

of the symplectic space (H∗(S(X), Q),ω)

Remark 3.4. Fock (H∗(S+(X), Q)) is the mirror of the Fock space of de Rham
cohomology classes for Gromov-Witten theory discussed in [7].

3.4. Quantum BCOV theory.

3.4.1. Perturbative quantization.

Definition 3.8 ([11]). A perturbative quantization of BCOV theory on X is given
by a family of functionals

F[L] = ∑
g≥0

h̄gFg[L] ∈ O(S+(X))[[h̄]]

for each L ∈ R>0, satisfying the following properties

(1) The renormalization group flow equation

F[L] = W
(

PL
ε , F[ε]

)
for all L > ε > 0. Here W

(
PL
ε , F[ε]

)
is the connected Feynman graph

integrals (connected graphs) with propagator PL
ε (3.3) and vertices F[ε].

This is equivalent to

eF[L]/h̄ = e
h̄ ∂

∂PL
ε eF[ε]/h̄

(2) The quantum master equation holds

QF[L] + h̄∆LF[L] +
1
2
{F[L], F[L]}L = 0, ∀L > 0.

This is equivalent to

(Q + h̄∆L) eF[L]/h̄ = 0

(3) The locality axiom, as in [8]. This says that F[L] has a small L asymptotic
expansion in terms of local functionals.

(4) The classical limit condition

lim
L→0

lim
h̄→0

F[L] ≡ lim
L→0

F0[L] = FLX .

(5) Degree axiom and Hodge weight axiom (see [11]).
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3.4.2. Higher genus B-model. Given a quantization {F[L]}L>0 of the BCOV theory,
we obtain a state

[
eF[L]/h̄

]
in the Fock space Fock+ (H∗(S+(X))) by Proposition

3.4. We will denote it by ZF. Let us choose an opposite filtration L (Definition
2.3), which induces isomorphisms

H∗(S(X), Q) ∼= H∗(X,∧∗TX)((z)), H∗(S+(X), Q) ∼= H∗(X,∧∗TX)[[z]].

In particular, it induces a natural identification

ΦL : Fock(H∗(S(X)))
∼=→ O(H∗(X,∧∗TX)[[z])[[h̄]].

Definition 3.9. Let F be a quantization of the BCOV theory on X, and L be
an opposite filtration of H∗(S+(X), Q). Let α1, · · · ,αn ∈ H∗(X,∧∗TX). The
correlation functions associated to F,L is defined to be

FB,L
X

(
zk1α1, · · · , zknαn

)
:=
(

∂

∂zk1α1
· · · ∂

∂zknαn

)
h̄ log ΦL (ZF) (0) ∈ C[[h̄]].

Here the superscript ”B” refers to the B-model. We can further decompose
FB,L

X = ∑
g≥0

h̄gFB,L
g,X . Then FB,L

g,X will be the candidate for the higher genus B-model

invariants on X. It is conjectured in [11] that there exists a canonical quantization
F (up to homotopy) of the BCOV theory on X which is mirror to the Gromov-
Witten theory on the mirror Calabi-Yau manifold. This proves to be the case for
X being an elliptic curve [24, 26].

3.4.3. The opposite filtrations. There are two natural opposite filtrations of H∗(S(X), Q).

The first one is given by the complex conjugate splitting of the Hodge filtra-
tion, which we denote by LX̄. In this case the correlation function FB,LX̄

X can be
realized explicitly as follows. Consider the limit

F[∞] = lim
L→∞ F[L]

which is well-defined since X is compact, hence P∞
L is smooth. The quantum

master equation at L = ∞ says that

QF[∞] = 0

as lim
L→∞∆L = 0. It follows that F[∞] descends to a functional on H∗(S+(X), Q)

F[∞] ∈ H∗(O(S+(X))[[h̄]], Q) ∼= O(H∗(S+(X), Q))[[h̄]].

The choice of the Kähler metric induces isomorphisms

H∗(S(X), Q) ∼= H∗(X,∧∗TX)((z)), H∗(S+(X), Q) ∼= H∗(X,∧∗TX)[[z]]
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via Hodge theory, hence defining an opposite filtration which is precisely LX̄.
Then

FB,LX̄
X = F[∞].

The second choice is relevant for mirror symmetry, which is defined near a
large complex limit in the moduli space of complex structures on X. Near any
such large complex limit point, there is an associated monodromy weight filtra-
tionW which splitts the Hodge filtration. Then the correlation function

FB,W
g,n,X : Symn (H∗(X,∧∗TX)[[z]])→ C

will be the mirror of the descendant Gromov-Witten invariants

〈−〉GW
g,n,X∨ : Symn (H∗(X∨,C)[[z]]

)
→ C

on the mirror Calabi-Yau X∨ under the mirror map.

Note that FB,LX̄
X doesn’t vary holomorphically due to the complex conjugate

splittingLX̄. This is the famous holomorphic anomaly discovered in [6]. Given a
large complex limit point, the natural way to retain holomorphicity is to consider
FB,W

g,X , which is usually denoted in physics literature by

FB,W
g,X ≡ lim

τ̄→∞ FB,LX̄
X

as the ”τ̄ → ∞-limit” [6] near the large complex limit.

3.4.4. Higher genus mirror symmetry. The mirror symmetry for elliptic curves is
easy to describe. Let E represent an elliptic curve. In the A-model, we have
the moduli of (complexified) Kähler class [ω] ∈ H2(E,C) parametrized by the
symplectic volume

q = Trω

where the trace map in the A-model is given by the integration Tr =
∫

E. The mir-
ror in the B-model is the elliptic curve Eτ = C/Z⊕ Zτ , with complex structure
τ related to q by the mirror map

q = e2π iτ .

Let
Φτ :

⊕
i, j

Hi(E,∧ jT∗E)[−i− j]→
⊕
i, j

Hi(Eτ ,∧ jTEτ )[−i− j]

be the unique isomorphism of commutative bigraded algebras which is compat-
ible with the trace on both sides. This is z-linearly extended to an isomorphism

Φτ : H∗(E,C)[[z]]→ H∗(Eτ ,∧∗TEτ )[[z]].
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The canonical quantization of BCOV theory was analyzed in [24], and the
explicit solution was presented in [26] via vertex algebra techniques. This leads
to the establishment of higher genus mirror symmetry on elliptic curves.

Theorem 3.1. [24] For allα1, · · · ,αn ∈ H∗(E,C)[[z]], the A-model descendant Gromov-
Witten invariants on E can be identified with the B-model BCOV correlation functions

∑
d

qd 〈α1, · · · ,αn〉GW(E)
g,n,d = lim

τ̄→∞ F
B,LĒτ
Eτ (Φτ (α1), · · · , Φτ (αn))

where the large complex limit is taken to be Im τ → ∞ on the upper half plane H.

It is proved in [24, 25] that the correlation functions for F
B,LĒτ
Eτ , before taking

the τ̄ → ∞ limit, are almost holomorphic modular forms exhibiting mild anti-
holomorphic dependence on τ̄ . On the other hand, the correlation functions of
Gromov-Witten theory are given by quasi-modular forms [31]. In this example,
the τ̄ → ∞ limit is the well-known identification between almost holomorphic
modular forms and quasi-modular forms [20].
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