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Preface

This note provides an elementary introduction to the theory of ordinary differential equa-
tions. It is based on the undergraduate course “Ordinary Differential Equations” that I lectured
at Tsinghua University in 2023. Chapter 1 and 2 start with concepts in ordinary differential
equations and discuss a few cases where solutions can be found explicitly. Chapter 3 and 4
cover fundamental theory on the well-posedness of initial value problems as well as analytic
properties of solutions. Chapter 5 explains boundary value problems and their solutions via
Green’s functions. Chapter 6 discusses the action principle and variation method, with focus
on the Euler-Lagrange equation and its application to a few historical examples. Chapter 7
introduces basic ideas on numerical solutions and their convergence. These topics serve for a
one-semester lecturing on an introductory course in the subject of ordinary differential equa-
tions. There are many great resources about these topics in the literature. We listed a few that

we have consulted at the end of this note.

I would like to thank iFEHT and 7 Rk, who have done amazing jobs of teaching assistant
for this course. An early version of this note was typed by JiiiEEHT, including all those beautiful
figures. I want to thank #{{T{T, XIJ¥ and fF-7-i% for their help on careful proofreading of this
note, as well as their important roles of being excellent students for the whole semester. Special
thanks go to a few friends who have been asking me various questions in differential equations

during the semester and have been pushing me to finish this note.



Chapter 1 Introduction

1.1 Basic Concepts

1.1.1 ODE and PDE

A differential equation is a relation between a set of unknown functions and their deriva-
tives. To find a solution is to figure out a set of functions that satisfy the corresponding relation.
For example

dy
27 _9
AN

is a differential equation describing a function y(t) with variable ¢. One solution is given by

y= e

It is straightforward to check that this function indeed satisfies the above differential equation:
d
&(6%) — 2(62t).

Solution of a differential equation may not be unique. For example, y = Ce?! is a solution

to the above equation ‘zﬁ = 2y for any constant C. Also, solution may not exist. For example,

dy ? 2 2
) =1 —¢—
() y

does not admit a solution for real valued function y(¢). The existence and uniqueness problems

the differential equation

for solution under certain circumstances play a majoy role in the study of differential equations.

Ordinary differential equations (ODE) are about unknown functions that depend on a
single independent variable. The example above is an ODE. In general, an ODE could involve
several unknown functions that all depend on the same single variable. For example, consider
a particle of mass m moving in the space in the presence of a force F = (Fy, Fy, F,) which
depend on the position (x,y, z) in the space. Then Newton’s law says that the trajectories of

the particle are solutions to

d2z
a2 s
d2y
e =
d?z

which is an ODE with three functions {z(¢),y(t), 2(t)} in terms of the single time variable ¢.

6



On the other hand, partial differential equations (PDE) are about unknown functions that

depend on several variables. For example, the heat equation

0 H?
—u(z,t) = @u(x,t)

is a partial differential equation in two variables t and z. It describes the conduction of heat in
a solid body distributed on the line at position z and time t.

In this note, we will focus on ordinary differential equations.

1.1.2 System of Differential Equations

If there is only one unknown function, then one equation is sufficient. If there are two or
more unknown functions, then a system of equations is required. We have seen one example of

moving particle above. As another example, the Lotka-Volterra (or predator-prey) equations

dx

ik Bxy

dy «, B3, 4,7 are constants
22 Say —

dt Ty — 7Y

describe the dynamics of biological system of a predator and a prey. The function z(t) describes
the population density of prey, and y(t) describes the population density of predator.

Such equations are called a system of differential equations.
1.1.3 Linear and Nonlinear Equations
Let us consider an ordinary differential equation

F(tvyvyla'” ’y(n)> =0

for a unknown function y with variable t. Here v/ = % and y(™ = (%)"y denote the corre-

sponding derivatives of y. The above function is called linear if F' is linear in the functions

vy, -+ ,y™. Otherwise it is called nonlinear. For example
y' —y +ty+t2 =0
is a linear differential equation. The following
y+y*=0

is a nonlinear differential equation.
Linear equations are easier to study and explicit solutions are usually available. Nonlinear
equations are more complicated and exhibit further exotic phenomenons. We will start to study

linear equations in Chapter 2, and the rest of this note is mainly devoted to nonlinear equations.



1.1.4 Order

The oder of a differential equation is the order of the highest derivative that appears in the
equation. For example,
()2 +ty=0
is a lst-order nonlinear equation, while

"

y"'+ty +y=0

is a 3rd-order linear equation.

A general linear ODE of order n is of the form
ao()y™ + a1 )y + -+ an(t)y + b(t) = 0

where a;(t) and b(t) are known functions of ¢. It is called homogeneous if b(t) = 0. It is said to
have constant coefficients if the functions ag(t),--- ,a,(t) do not depend on ¢, i.e. are constant
functions. For exmaple,
y' +y=0
is a 2nd-order homogeneous linear equation with constant coefficients.
Let us point out that all ODEs can be equivalently described by a system of lst-order
ODE. This is useful since it will often reduce our work to study lst-order ODE only.

To illustrate the basic idea of this reduction, consider the following ODE of order n
F(t?yay,7 L F 7y(n)) =0.

This can be recast as the following lst-order system

(

F(t7y7y1,”' 7yn—17y;,1) =0
y’=y1
y'1 =2

y;—2 = Yn—1

It is clear that solving this 1st-order system is equivalent to solving the original order n equation.

As an exapmle, let us consider a homogeneous linear system of order n

Y™ = agy +ary’ + -+ anay™Y.

This can be reduced to a linear system



where the column vector ¥/ is

Yy

Y1

y= Y2

Yn—-1

and A is the n x n matrix
0 1 0
0 1
A=

0 .0 ... 0 1
ap ai -+ Ap—2 Qap—1

In general, any linear equation can be put into a lst-order linear system of form

d + S

at’ =

where ¥ is the column of unknown functions. A(t) and B(t) are a matrix and a column vector

respectively that could depend on the variable ¢.

1.1.5 Integral Curve

We illustrate some basic geometric idea which is useful to keep in mind along our study of
differential equations. Consider a 1st-order ODE of the form

dy

= f(t,y).
o = f(ty)
We can draw the vector (1, f) at each point (¢,y). This will be called the direction field.

Now we can draw any solution y(¢) as a curve in the (¢, y)-plane parametrized by

(t, y(2)-

In other words, we consider the graph of the solution y(t) in the (¢, y)-plane. This is called the
integral curve. Being a solution, the integral curve has the property that it is tangent to the

direction vector (1, f) since
L u0) = (1, £ (1),
Example 1.1.1. Consider the equation
dy

dt



The direction field is plotted as blue and the integral curves are drawn red.

Y y=0Ce,C >0
e / /!
e
— o ;t
SRR S
NIRN \ \

y=Cel, C <0

Geometrically, the integral curve is obtained by “following the direction field”.

1.2 Examples of Solutions

Very few differential equations can be solved in closed form. However, when explicit solving
techniques are available, they provide some insights about behavious of differential equations.
Such solving tricks for certain types of equations are, in some sense, a kind of art. We discuss

a few of them in this section and study systematically for linear equations in Chapter 2.

1.2.1 Integrating Factor

Consider a differential equation for unknown function y(¢) which you can turn equivalently
into the form
d
—F(t,y) =0

for some expression F'(t,y). Then solutions can be obtained via the relation defined by
F(t,y)=C

where C is a constant. Sounds cheap, right? Yes! This is the most lucky situation you can

have. Let us look at some examples.

Example 1.2.1. Consider the differential equation

dy
— —ay =0, a is a constant.
at

at

We can multiply both sides by e~

—at% ae—aty =0
Then this is equivalent to
d, _
ﬁ(e y) =0
which is solved by
e Uy =C



i.e.

for some constant C.

y = Ce™

O]

This example looks simple, but here you need to guess the factor e=% by observation.

Things can be more tricky.

Example 1.2.2. Consider the equation

t— =y

dy
dt

Let us divide #? on both sides and write
y)2
= 1
(1) +

O

=

=

1dy

t dt

1

A0

A6

()7 +1

from which we can solve y for

In general, the equation

takes the form

0

ot

2Y

2Ly t2

C' is some constant

y = ttan(t + C).

Suppose we have an equation of the form

Then a necessary condition for this to be a total derivative of the above form is

In fact, if we can write

for some F', then

Q(tv y) + P(tvy)i = 0.

0

=P

ot

Pt
Qt

9
ot
)

0y

Y) =
Y) =

d
OF(t,y)d
F(t,y)+ 200 _

Oy dt

dy
dt

(tv y) = %Q(tv y)

OF (t,y)

Jy
OF(t,y)
ot

_ 9*F(t,y)
- Otdy
_ *F(t,y)

11

0yot

0.



and therefore %—I; has to be the same as %—3. Thus if you observe
op _ od
ot oy
holds, then you are likely to find such F'.
If you find %—I; % %—Cj, you can still try to multiply by a function A(¢,y)

A(t,y)Q(t,y) + A(t,y)P(t,y)Cc% =0

and see whether 5 5
a(AP ) = @(AQ)

holds. Such A is called an integrating factor. If you can guess or find such an integrating factor,
then you are done with good luck.

In the example

dy
-J =0
at
we have P =1 and (Q = —ay. We check
oP Q)
— =0#F =—'==a.
ot oy

@ which helps us to solve the equation in this case.

The integrating factor is A = e~
It is a very special situation to be able to find an integrating factor. But somehow this is

the first thing that you would try and guess.

1.2.2 Seperation of Variables

Consider a differential equation of the form

dy _
dt

If ¢ can be written as a product of the form

o(t,y) = f(y)g(t),

o(t,y).

we say this equation is separable. For separable equation

dy

29 t

o = fWe()
we can write this as (need extra care about the process of dividing, see below)

dy

—— = g(t)dt.
f(y)
If we integrate both sides, we get

dy /
—— = [ g(t)dt
f(y)
which gives the relation between y and t.
Note that in this process, we may miss some special solutions due to the process of dividing.

For example, if f(a) = 0, then the constant function y = a is a solution. Such special solution

can be added by hand at the end.

12



Example 1.2.3. Let us again look at
dy
i
This time we treat it as a separable equation, with f(y) =y and g(t) = a. Then

ay.

d—y:adt

= In|y| = at + C’
= y = Ce™, C =+

Here C' = +e€ # 0. The missing special solution is y = 0, which corresponds to the case C' = 0.

Adding this back, we get the same set of solutions as before.

Example 1.2.4.

— =¢eYsint

dt
This is a separable equation. We have

e Ydy = sintdt

= /e_ydy: /sintdt

= —e Y=—cost+C
= y = —In(cost — C).
This expression illustrates the following interesting phenomenon about different solutions.
o If C < —1, then cost — C' > 0 for all ¢. The solution y(t) exists for all ¢.
e If —1 < C <1, the solution exists only for a finite time interval and then blow up.

We will discuss this phenomenon systematically in Section 3.2.

1.2.3 Change of Variable

As we study in calculus, change of variable is a useful method to perform integrals. It is

also a standard trick to solve differential equations. We illustrate by a few examples.

Linear Change

Consider a differential equation of the form

dy
gl f(at + by)

where a, b are constants. This can be solved by introducing

z(t) = at + by(t)

dz

which becomes a separable equation.

13



Example 1.2.5.

Let z =1+ 3y. Then

dt +z z

c dr=dt
z2+3

N /(l—zj_?))dz:/dt

= z—3ln|z+3|=t+C

3y —3In|t+3y+3|=C
= t+3y+3=C'eY, ¢ =e €3

The special solution is t + 3y +3 =0, i.e. ,

_t+3
-

So all solutions can be obtained from the relation

t+3y+3=CeY

where now C' can be an arbitrary constant.

Homogeneous Equation

This is the case for

dy y
=)
We can rewrite this equation in terms of
t
ult) = y(t )
du y ldy
= — =z 4+ -2
dt t2 + t dt
du —
L e fw-u
dt t
which becomes a separable equation.
Example 1.2.6.
dy _y ¢t
at t vy
Let u = 4. Then
du  u— % —u 1
dt t ot
dt
= udy = ——
t
Ly
= —u® = —Inlt| + C4

2
= u==+/C —2In|t|

14



Chapter 2 Linear Equations

In this chapter we study linear ordinary differential equations. Linear equations appear
frequently in applications, and they can be solved and analyzed explicitly. We introduce the
method of exponential matrices for solving linear systems with constant coefficients, and gener-
alize it to the path-ordered exponential for nonautonomous linear systems (linear systems with
varying coefficients). We also discuss the method of characteristic polynomials and variation of

parameters for solving linear differential equations.

2.1 Linear Systems with Constant Coeflicients

We will start our study from linear systems with constant coefficients. As we have discussed

in Section 1.1.4, such a system can always be reduced to a lst-order system of the form

d [~
Si=A g+ B()

dt
Y1
where ¢ = : is the column of unknown functions,
Yn
ail - Qln
A=
ap1 -+ Qpp

is a n X n matrix with constant entries, and

is a column that in general depends on the variable .

2.1.1 1st Order Homogeneous System

Let us first consider the homogeneous case when g(t) = 0. The equation



looks very much like the scalar equation % = ay. In fact, the followig theorem shows that it

can be solved in a similar way.

Theorem 2.1.1. Given any column vector 4o € R™, there exists a unique solution to the
equation
d T Ad

that satisfies the initial condition §(0) = ¢o. The solution is explicitly given by

7(t) = .

tA in a minute. Nevertheless, the

We will explain the meaning of the exponential matrix e
expression of the above solution is intuitive. Based on our experience on the exp function, with
a bit of brave, we can check

d o -
%(etAyO) — AetAyO

which indeed satisfies the required equation. The initial condition is also manifest:

tA - 0 - —
e“o),o = € - o = Yo-

Exponential Matrix

Let us denote

M,, = {real n x n matrices}.

We will define a norm, hence a distance function, on the space M,,. This will allow us to talk
about limit and convergence for matrices.
Recall that for any vector
z1

T2
eR”

8y
I

Tn

we have a Euclidean norm defined by

2] == \Jad +a] +- a2,
Let A € M,, be a n x n matrix. It defines a linear map
A: R™® — R"
r—A-Z
This allows us to define a norm, which is called operator norm, by

|All := sup |AZ|.
5
The norm || A|| measures the “size” of A. Note that there are many different kinds of norms
that can be defined on M,,. We will use the above operator norm which is convenient for our
discussions (in fact, this is also defined for linear operators on infinite dimensional spaces). Note

that the sup can be achieved since {Z € R" | |Z| = 1} is compact.

16



Proposition 2.1.2. Assume A = . Then

anl -+ Odnn

H;B}X!az'j! <A< lag]-
’ Zv]

Proof: Let us write

=T
Uy ak1
A= : where U = : e R"
~T
Uy, Qkn

and T refers to transpose. Then for any ¥ € R" with || = 1, we have

i -z (i1, T)

where (-, -) denotes the Euclidean inner product on R". Using the Cauchy-Schwarz inequality

(@, o) < ldllo] Va7 eR”,

we have
AZ <Y i@ @) < Y lallz =Y lal <Y layl.
This proves the inequality on the right hand side.

Consider the unit vector

<.

we have

By definition
|All = |A€j] = |ai;|  for any i, ;.

This proves the inequality on the left hand side.

17



Proposition 2.1.3. For matrices A, B € M,, and ¥ € R"
D ||Al| = 0. ||A|| =0 if and only if A =0
@ [IAA] = [A[[A]l for A € R
@ [|A+ B < [ All + (Bl
@ |AzZ] < [lAll|z]
® [AB| < [|AlllB]

Proof: Exercise O

In particular, properties (D@ @) simply that || - || defines a norm on M,,. This allows us to

talk about limit and convergence. We say a sequence of matrices {A,} converges to B if
lim |4, — B|| =0.
n—o0

In this case, we write B as the limit

lim A, = B.

n—o0
Note that by Proposition 2.1.3, lim A, = B is the same as saying that the limit of each
n—oo
entry of A, is the corresponding entry of B.
Let A € M,, be any square matrix. By @ of Proposition 2.1.3, we have
< A"

n!

nl
which decays to zero very fast as n — oo. This implies that the limit

N Ak

exists, and we denote this limit matrix by

A - Ak
e = —.
k!
k=0
So the power series for exponential function works for matrices.

Similarly, the matrix ' that depends on the variable t is

O ik Ak
etA o t A
k!

k=0

By a bit of further analysis, you can show that e!4 depends smoothly on t. Its growth with ¢ is

bounded by

k gk k
4| = A |t| HAH _ el

> tk’Ak
Do

k=0

2

when [t| — oo.
The convergence property for the series defining e is as good as that for the series defining

the exponential function e®. This allows us to do many calculations for e” as that for e®.

18



Proposition 2.1.4.
d
i et4 = Aett.

Proof: For each k > 0, we have

d tkAk tk_lAk
dt( k! ) R

The proposition follows by sum over k. O

Proposition 2.1.5. If square matrices A and B commute with each other, i.e. AB = BA, then

Proof: .
AE 3 (A+ B)

n!
n=0

Using = 1 - n n—
AB:BAHZ:OTL!;<I€>AI€B '
= AkBm
/3> klm!

n=0 k4+m=n
[es) Ak (9] B™ 0\ 5
k=0 m=0

There is a slight missing analysis justifying that the above power series calculation is allowed.

We leave it to the reader. O
Remark 2.1.6. In general, if AB # BA, there is the beautiful Baker-Campbell-Hausdorff formula
oA . oB — gA+B+3[ABl+ 15 [A[AB] -5 [B,[A, B+

where “---” indicates explicit higher commutator expressions.

A

Proposition 2.1.7. For square matriz A, the exponential matriz e® is invertible and

(eA)fl — efA

Proof: A and —A clearly commute. Then

We are now ready to prove Theorem 2.1.1.

Proof of Theorem 2.1.1. 1t is clear that

(t) = ey

19



solves the differential equation
dyj
29 AF
at ~ Y

with the initial condition %(0) = .
To show uniqueness, let (¢) be another solution that also satisfies §(0) = 7. Then
d - d
pn (e*tAg(t)> = —eMAG+ e*tAgg = e MAj+eMA5=0

which implies that e~*4¥ is constant vector. At t = 0,

e gl = §(0) = yo,
=0

from which we conclude § = e*4yg. This proves uniqueness. O

2.1.2 1st Order Inhomogeneous System

Let us move on to consider inhomogeneous linear equation with constant coefficients. The
general form, after reduction to order one, is

dij .
2 AGb(t
-, ¥+ b(t)

where A is a constant n X n matrix and

is a column vector that could vary with .
We can use similar strategy to solve the above equation. Let us multiply e *4 on both
sides. Then the equation becomes

d, _;4. v
%(e A7) = e (1),

Integrating both sides, we find
t
e AT — gy = / e_SAb(s)ds.
0
Here %o = ¢(0) is the initial value of § at t = 0. It follows that

t
7= ey + / et=9)4p(s)ds.
0

This immediately leads to the following result

Theorem 2.1.8. Given any column 3y € R™, there exists a unique solution to the equation

that satisfies the initial condition §(0) = 4o. The solution is explicitly given by
t
g(t) = ey + / eU=9A4p(s)ds.
0
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2.1.3 n-th Order Linear Equation

Let us now discuss how to solve an n-th order linear equation with constant coefficients.

The equation is of the form
v+ a4t a1y + any = b(t)

where a;’s are constants.

As we have discussed, this equation can be reduced to the 1st-order system

dy

L = A-G+b(t
o g+ b(t)
where
0 1
Y 0 1
!
1
0
0 1
Yn—1 b(t)
—Qp —0p—1 - —G2 —a

n-th order homogeneous equation

Let us first focus on the homogeneous case when b(t) = 0. By Theorem 2.1.1, it can
be shown (see Section 2.2.1) that solutions will be expressed as certain linear combination of
functions of the form t™e*? where ); is an eigenvalue of A. Instead, we will present a more
direct way to show this using the method of characteristic polynomial.

The characteristic polynomial of A is

A -1 0
A -1
det(Al — A) = det =N+ e AT @\ Rt a,.
0 A -1
an Gn—1 -+ Qa2 A+ai

Eigenvalues of A are roots of this polynomial.
Definition 2.1.9. The characteristic polynomial of the equation
Y™ + a1y +ay™ + -t ay =0

is defined to be
N a AN apA" 2 4t = 0.

We explain how to use the characteristic polynomial to solve the equation. Let
POA) =N+ a1 A" P a2 - tay,
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denote the characteristic polynomial. It can be factorized as
PA)=A=A)"™A=X2)™2 o (A= Ap)™F

where {A1, Ag, -+, Ax} are all different roots of P(A) with multiplicity mi,mg, -+ ,mg. The

differential equation can be written as

or equivalently

()" (2 ) () e
Proposition 2.1.10. The following functions
{t" MY ocivamyy {12 ogicmas s {t M ociiam,
are n linearly independent solutions to
y™ 4+ a1y Y + agy™® D + - 4 any = 0.

Proof: We check that the above functions are all solutions. Let us consider t1e*? for 0 < i; <

myq. Since the differential operators % — AL, e, % — A all commute with each other, we have

d i At d . d "k (d " ot
hat it [ 2 il 7 ¥ yl_ i1 A1
F (dt> (t c ) (dt A2> (dt Ak) <dt Al) (t ° ) '
Thus it suffices to show (4 — Al)ml (treM?) = 0. Using
L) asoy =t (S -x) s+ 1)
at ! TV 2
and i1 < mq, we see that

d m oG d mi—j
—~ tireMt) — VR (| Nt
<dt 1) ( ¢ ) -~ <zl) <dt 1> c

J]=

since (% — )\1) eMt = (. ]

A general solution can be obtained via a linear combination of the above n solutions. In

the case when we have complex root « £ 4/, with multiplicity m, the above proposition leads to

{elotiB)t polatif)t .. ym—lolatif)ty

and
{6(0471',8)157 te(afiﬁ)t’ o tmfle(afiﬂ)t}'

If we want solutions expressed in terms of real functions, we can equivalently rewrite the above

solutions via a different basis
{cos(Bt)e?, t cos(Bt)e™, - -, ™ cos(Bt)e}
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and
{sin(Bt)e®, tsin(Bt)e™, - - ™ Lsin(Bt)e}.

To uniquely determine a solution, we need to impose an initial condition, say at ¢ = 0.
Based on our general discussion on 1-st order system, the initial condition (at ¢ = 0) is to

specify the value of ¢ at t = 0. Since

Yy Yy
. Y1 Y
y= . = )
Yn—1 y(”_l)
the initial condition to be imposed is
y(O) = Cp, y/(O) =1, cee y(n—l) (O) =Cp_1

for some constants ¢;. In other word, the initial condition for determining a solution of n-th
order linear system is to specify the value of y, 4/, --- ,y™ 1 at t = 0. This leads to n equations

that can be used to determine the n linear coefficients for the n solutions in Proposition 2.1.10.
Example 2.1.11. Solve the equation
y" =3y +2y=0
with the initial condition y(0) = 3, ¥/(0) = —4, y"(0) = 7.
Solution. The characteristic polynomial is
Mo3a+2=0-12\+2).

By Proposition 2.1.10, the genenral solution is given by

alet + agtet + age_zt.

The initial condition leads to linear equations for a;’s

ai + 0 4+ a3 = 3
ai + ay — 2a3 = —4
ar + 2a0 + 4daz = 7
which gives a1 = 1, as = —1, a3 = 2. Hence the solution with required initial condition is

y(t) = (1 —t)e! + 272,

Example 2.1.12. Solve the equation
y' =2y +5y =0
with the initial condition y(0) = 2, ¥/(0) = 0.
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Solution. The characteristic polynomial
A2 =2\ +5
has complex roots A = 1 + 2¢. The general solution is
Y =al el cos 2t + aget sin 2t.

The initial condition requires

aq = 2
a1 + 2a9 = 0

which gives a; = 2, ao = —1. The required solution is

y(t) = (2 cos 2t — sin 2t)e’.

n-th order inhomogeneous equation

Now we discuss the inhomogeneous case
y(n) + aly(nfl) +-tayy = b(t)

where a;’s are constants. We first observe that if y; and yo are two solutions, then their difference

7 = y1 — yo satisfies the homogeneous equation

Q(n) + alg(n—l) + o+ ang=0.
Equivalently, let u(t) be any special solution of the inhomogeneous equation, i.e. satisfying

u™ 4+ a4 4 gu = b(t).
Then a general solution can be written as
y=u+y

where ¢ is a general solution to the homogeneous equation

7™ + a1 g™V 4+ 4 a5 = 0.

As we have learned, such g can be solved using the characteristic polynomial.

To find a special solution, let us write the equation in the 1st-order form
dy

2 = A7 _'t
o g+ b(t)
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where

0

Y 0 1
Y

. 1

0
0 1
Yn—1 b(t)
—Qp —0p—-1 -°° —a2 —a1

By Theorem 2.1.8, we see that a special solution can be found by

t
ii(t) = / eU=9Ap(s)ds.
0

The matrix manipulation could be complicated in general. Nevertheless, it can be written as

u(t) = /0 G(t — 5)b(s)ds

for some function G. Such G is an example of Green’s function, which we will discuss in detail in
Chapter 5. There is another method, called “variation of parameters”, to write down a special
solution once we know a basis of solutions for the homogeneous case. This method works for
general linear system with varying coefficients, and will be discussed in Section 2.3.2.

In practice, we can guess a special solution via certain ansatz from the shape of the equation.

Example 2.1.13.
y" + 1y = cos 2t.

Let us consider the complex form of the above equation
e =% y = Re(z).
It is natural to try the ansatz of the form
2(t) = ae*®,

Plug into the equation, we find

. . 1
(—3a)e? = & = a=-3.
Thus we find a special solution y = Re (—%e%t) = —% cos 2t.
Example 2.1.14.
y" 4+ 1y = cost

We again look at the complex equation

" 3
24y = e,

Then we try the same ansatz as before



This time it does not work: if we plug into the above equation,
(ae™)" + (ae™) = 0.
The reason for the failure is that ¢ is a root of the characteristic polynomial. Thus we next try
z = ate™.

This time we find a = —% works. Thus

1 iy L
y—2Re( ite )—2tsmt

is a special solution.

2.2 Long-term Behavior

We discuss examples of long-term behavior of solutions to homogeneous linear system with
constant coefficients in order to gain some idea on the limiting behavior of solutions.
2.2.1 Jordan Canonical Form
We consider the behavior of solutions to
dy

Y _ Az
gt Y

when ¢ becomes large. The solution with initial condition ¢(0) = ¢ is given by
J(t) = e5p.
Therefore we need to understand e*4 more explicitly. The key is the following
Proposition 2.2.1. Let A, B be two square matrices and A = PBP~'. Then
et = peP Pt
Proof: This follows from

AF = (pBP Y =pPBP'PBP!... PBP' = PBFP
R_,l_/ S~~~

Then
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Given any square matrix A, we can write it in terms of Jordan canonical form

A1 0
A1
0
1
0 A
Ao 1 0
A 1
A=P 1 p1
0 Ao
N1 0
N1
0
1
0 by

Here \;’s are eigenvalues of A (could be complex numbers) and P is an invertible matrix

(complex valued in case of complex eigenvalues).

Remark 2.2.2. Before we move on, we simply remark that the exponential matrix works well

the same for complex valued matrices, with the same defining power series

A _ A
© T L
k=0

A: complex n X n matrix.

This is very convenient for many applications.

Using the Jordan canonical form, we can write
A=P(D+N)pP™!
A1
A1
A2

where D = is the diagonal part of Jordan form,

A2

Al

Al
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and

01 0
0 1
0
1
0 0
01 0
0 1
N = 1
0 0
01 0
0 1
0
1
0 0

is the off diagonal part. It is clear that N is nilpotent
N" =0, n: size of A

and D, N commute
DN = ND.
It follows that
etA = Pet(D+N)P_1 A PetDetNP_l.

t

Let us consider the two terms e/ and eV in the middle. Since D is diagonal, e'? is simply

et)q

tA\1

tAo

tD __
t\o

tA;

t
For the nilpotent matrix IV, we have
NP =0

where p is the maximal size of the Jordan blocks. Nevertheless, N = 0 always hold where n is

the size of A. It follows that

n

Nt .
tN __ Yo
€ _Zi!t

1=0
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A

tDetN hence for et4.

which is a polynomial in ¢. This allows for explicit calculation of e

In the case when A is diagonalizable, i.e. N = 0, we have

A1
A2

Then

As an application, we have the following result

Proposition 2.2.3. Assume all eigenvalues of A have negative real part. Then for any solution

y(t) of
dy

o _
i
we have
tilgrnoo y(t) TS

In other words, all solutions will go to the origin eventually. In this case, the origin is called a

sink or attractor.

Proof: We can write ¢ as
j(t) = e .

Using the Jordan decomposition as above, we have

tnN’ﬂ
etA:PetD<1+tN+---+ : )P‘l.
n'

Here

where A1, Ag, -+, A, are all eigenvalues (could repeat) of A. By assumption,
Re(\) <0 for all \,;.
So eti’s exponentially decay to zero when t — +00. Since

lim e %™ =0 foralla >0, m € Z,
t—+00
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it follows that

TLNTL
lim etD<1+tN+---+t ):0.

t—+o0 n'
Thus
lim e =0, hence lim ey = 0.
t—+o00 t—+o00

O

In general, when eigenvalues of A have both positive and negative real parts, things will
be more complicated and the initial condition will play an important role. Before we move to
this, let us discuss the real Jordan canonical form.

Recall that if we want to stay in the realm of real matrices, then A can be put into the real

Jordan canonical form in terms of real matrix P

Here each Jordan block is of the form

o for real eigenvalue A of A,

o for complex eigenvalue A = a + i3,
G2 60 |
8 « 0 1
a -8\ (10
B 8 « 0 1
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In particular, if A is diagonalizable, then there exists an invertible real matrix P such that

M 0
A2

A — P (041 _/81) })_1
f1 o

(az —52>
B2

2.2.2 Examples of Two-dim System

To illustrate the main phenomenon, let us focus on the two-dim system

dyj
< =cA
SPRINRY
where ¢ = u and A is a 2 X 2 matrix. Let
Y2
A=PJpPT}

where J is the real Jordan canonical form. We can use a linear transformation to redefine
ij %1 Sop-1 1
Y2 Y2

dj -
A
ar ~ 7Y

So without loss of generality, we can assume A is in real Jordan canonical form from the start.

Then the system becomes

Note that § = 0 is always a solution, and so the origin is called an equilibrium point. We
discuss below in detail for cases when A is diagonalizable.

e Case I : A is diagonal with real eigenvalues

MO
A= ("1 . MER.
0 Ao

(yl(t)> _ <y1(0)€/\1t> _
Y2 (t) ya(0)er!

Let us assume both A; # 0, so both y;’s can flow. We draw the solutions on the y; — yo

Then solutions take the form

plane with arrow pointing to the ¢ increasing direction. Then we have the following situations
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Y2 Y2 Y2

Y
A

Al U1

Y1

N

)\1<A2<0 )\12)\2<0 /\2<)\1<0

In the above cases, the origin is called the “sink”: all solutions will flow eventually to the

origin at t — 4o00.

Y2 Y2 Y2

Y1

v y1 \\
/

A

-
p> N

)\1>)\2>0 )\1:)\2>0 )\2>)\1>0

In the above cases, the origin is called the “source”: all solutions will back-flow to the origin

at t — —oo.

Y2 Y2

A N
N 4

AL <0< A Ao <0< N

Y1 Y1

Nz
I

In the above cases, the origin is called the “saddle”. For example, in the case A\ < 0 < Ao,

<y1<t>> _ <y1<o>em>
ya(t) y2(0)e 2t
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o will flow to the origin along y;-axis when y2(0) = 0,

o will flow from the origin along ys-axis when y;(0) = 0,

o when y1(0) # 0, y2(0) # 0,

Y1 0
— when t — +o0
Yo +oo
+
o — > when t— —00
Y2 0

e Cage Il : A has complex eigenvalues A = a + i[5,

Let us collect y1, 12 into a complex function

Z = y1 +1yo.

Then the matrix equation

dy

M. Jof )

at ~ Y
becomes a single equation for complex valued equation

dz

— = Az

dt

which is easily solved by
2(t) = e2(0).

Viewing (y1,y2) as the complex plane, we have the following cases

Y2 Y2

(A, N
N N

a=0,8>0 a=0,8<0
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In the above cases, the equilibrium of the origin is called the “center”: the trajectories of

other solutions are concentric circles.

Y2 Y2

N
< P

a<0,8>0 a<0,8<0

In the above cases, the equilibrium of the origin is called “stable focus”.

Y2 Y2

ik X

a>0,8>0 a>0,5<0

In the above cases, the equilibrium of the origin is called “unstable focus”.

2.3 Linear Systems with Varying Coefficients

2.3.1 Path-ordered Exponential

We now discuss nonautonomous linear system (linear systemsswith varying coefficients)

dy -
— = A(t)y + bt
U~ A7+ )
where the matrix A(¢) is no longer constant, but could vary continuously with ¢.
Let us start with the homogeneous case
dy
— = A(t)y.
I (t)y

Since A(t) could vary with ¢, the exponential e*4 no longer works

%(etA(t)) 7,éjél(t)etA(t)‘
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Nevertheless, we can still find an analogue of the exponential that works for this case.

Let us first consider the following expression

t
0

Pa(t) :/Ot dtn /Otn dtn_l.-./2dtlA(tn)A(tn_l)..-A(tl).

Equivalently, we can write

Po(t) = / Aty -ty At Alby 1) - A(ly).
0<t1<to<--<t, <t
\ A(tq) A(tz) A(tn-1) A(tn) J
0 t t tn1 t, t

The operation of matrix multiplication by P, (t) can be viewed as applying A(¢;) first at
time ¢1, then applying A(tz) at a later time to, etc, until finally applying A(t,) at last. This
application of matrix multiplication is ordered in time ¢, and integrated over all such ordered
configurations. Observe that

—P,(t) = A(t)Py—1(t).

Definition 2.3.1. We define the path-ordered exponential

. oo t 1n to
P <€f0 A) = Z / dt, / dtp—q1--- / dtlA(tn) cee A(tl)
) 0 0

In terms of the notation above, this is

o0
P (déA) =Y P.().
n=0
To see the convergence of this series, assume
JA(s)| <M, V 0<s<t.

Then

"M
[P < / dty - din[|AGtR)| - - [AG)) ]| < ——-
0<t1<tp<--<tn<t n:

This implies the convergence of the series sum for the path-ordered exponential.
Proposition 2.3.2. The path-ordered exponential satisfies

@ If A(t) = A is a constant matriz, then

P <ef(§ A) =4,

@ P(eh)| =1

t=0

@ The following differential equation holds

%? (el ) = AP (b ).
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@ The path-ordered exponential P (eft;s A) is invertible. Its inverse is given by the sum (note

for reversed ordered in time)

RN T t tn to
fp(efoA) :Z(—m/ dtn/ dtn_l-u/ At A(t1) - - A(tn).
o 0 0 0
Proof: (O When A(t) = A is a constant matrix,

tn
Pn(t):/ dtl"'dtnAn:—An
0<ty < <tn <t n!

oo

= fP(efotA) = Z t—'An = et
n!
n=0

@ is clear.

@ follows from %Pn(t) = A(t)P,—1(t). Then

%TP (ef$A> Z% D Pult) = n; %Pn(t) = A(t)Y Poa(t) =A(t)?P (eng) _

n>0 n>1

@ Let P(t) =2 (efot A) and let

a(t) :Z(—m/otdtn/: dtn_l---/OtQ Qi A(t) - Alt).
n=0

By the same calculation, taking care of the reversed order, Q(t) satisfies the equation

dflff) = —Q(H)A(t), Q(0)=1.
Then
%(Q(t)?(t)) = —(Q()A(1))P(t) + Q) (A(t)P(¢)) = 0.
Thus Q(¢)P(¢) is independent of ¢. Since Q(0)P(0) = 1, we have Q(¢) = P(¢)~! for all ¢.

O

This proposition says that the path-ordered exponential can indeed be viewed as a gener-
alization of the exponential ' to the case when A depends on t.
Theorem 2.3.3. Given any column vector 4o € R™, there exists a unique solution to the
equation

d R
= A7+ (1)

that satisfies the initial condition §(0) = ¥o. The solution is explicitly given by
t —
7= P(t)jo + P(t) / P1(5)5(s)ds.
0
Here P(t) =P (efot A).
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Proof: By Proposition 2.3.2
d d

P(t) = A(t)P(t P(t —P(t)"TA().
SP() = AWP), P07 = —P() )
We can solve the above equation via the same strategy as before. Multiplying P~1(#),
= L@ on =P Wi
dt Y

= P = o + / Pt
= )3 + P(t / P (s)b(s
Here ¢y = g’|t:O is the initial value of ¢ at t = 0. O

The long-term behavior of this solution will become complicated in general, and depend

on how A(t) varies with ¢.

Remark 2.3.4. If we write P(t) as n column vectors

P = (y1®) y2t) - yal)),

then {y1, -+ ,yn} form n linearly independent solutions of the homogeneous equation
dy
— = A(t
o = A

The linear independency follows from the invertibility of P(¢). A basis of n linearly independent
solutions is also called a fundamental solution.
2.3.2 Variation of Parameters
Let us discuss the case for n-th order linear equation
v+ ar(y" Y -t a1 (DY + an(t)y = (D)

when the coefficients are no longer constants. Again, the general solution is given by a sum of

a special solution and a general solution to the homogeneous equation
7™ +ar ()7 Y 4 an(t)g = 0.

We can obtain a general solution to the homogeneous equation, say using the path-ordered
exponential. Here we explain a trick to find a special solution, called the method of variation
of parameters.

Let g1(t),- -+, yn(t) be n linearly independent solutions to the homogeneous equation
( )+a1( ) (n— 1)+---+an(t)§=0-

The method of variation of parameters is to seek for a special solution of the inhomogeneous

equation in terms of a form
y(t) = cr(®)yu(t) + - + ca(t)yn(t)
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where ¢;(t)’s are functions of ¢ that are assumed to satisfy the conditions

Zc{(t)g](m) (t) =0, for 0<m<n-2

7
i=1

Assume this holds. Then

i=1
v (1) = 3" 0 + > dmi" ).

Substituting this into the original equation, we find

n

S @) = ().

i=1
Thus a special solution can be obtained by finding ¢;(¢)’s satisfying
n
> d®a™E =0, 0<m<n-2
i=1
n
~(n—1
> A" W) = b
i=1

(*) can be written in matrix form as

U1 Un ]

D/ETR AR B N B
~(n—1 ~(n—1

g NGETRyShes b(t)

This can be solved using Cramer’s rule by

Wi(t)
/t — K3
CZ() W(t)
Here
T in
W(t)=det | °' ,
~(n—1 ~(n—1
T
and
Y1 e Uit 0 Yitl - Un
g o Ui 0 gy o
Wi(t) = det | . . )
gt e gt e gl e gy

Remark 2.3.5. W (t) is called the Wronskian determinant of the functions 91,92, , Jn.
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Therefore a special solution of the inhomogeneous equation can be found by
- " Wi(s)
gi (t d
>0 [

Example 2.3.6. Consider the inhomogeneous equation

y'+y=f(t).

This equation has constant coefficients, so the general solution to the homogeneous equation

can be found from the characteristic polynomial
M+1=0 = A=
We obtain two independent solutions to the homogeneous equation §” + ¢ = 0 by
91 = cost, 7o = sint.

The Wronskian of them is
cost sint
W = det =1
—sint cost

0 int
Wi = det < - ) = —sintf(t)

and

f(t) cost
cost O
Wy = det <_ 9% f) = costf(t)

The method of variation of parameters leads to

0= [ == [ o) ss)as
0= [ 2= [ costo)sis)as

t
1) = exOin(®) + c20ia) = [ sin(t =) f(5)ds.

A special solution is found by

Example 2.3.7. Consider the equation
ty" — (t+ 1)y +y =1t

We divide both sides by t to arrive at the standard form

t+1
vy ly—t.

Two independent solutions of the homogeneous equations are
() =, ga(t) =t + 1.
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Their Wronskian is

= —te!

Il

o

)

ot
N
®, ®
~
—~ +
—_
~_

and

2 -t

———
| I
(o}
)
-+
~+ O
~
+
—_
~—
I

5
|
(oW
D
-+
g™ g
~ ~
~+~ O
N—— =
I
~
]
o~

Therefore we can choose

A special solution is found by

y(t) = —(t+2) —t(t+1) = —t* — 2t — 2.
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Chapter 3 Initial Value Problem

We move on to study non-linear differential equations. By reduction to first order, a general

form of non-linear equations can be expressed by a system

dy
— =F(y,t
Y1
where y = | : | is the column of unknown functions, and
Yn
Fl (y’ t)
F2 Yy,
Ey(y, t)

is a function from some open subset U C R"™ x R to R".
In this chapter, we will focus on the initial value problem which amounts to solve

dy

o = F(Y7t)7 Y(tO) S E €R"
dt

where the initial value of y at a specified time tg is chosen. Another important situation is the

boundary value problem, which we will study in Chapter 5.

3.1 Local Solutions

Solutions of non-linear system may blow up in a finite time ¢ even though all coefficients
of F behave very well. For example, consider the following non-linear equation
dy
- — y2.
dt

1
-t

Nevertheless, local solutions with specified initial condition are guaranteed for a large class

One solution is y = which blows up when ¢ goes from t =0 to ¢t = 1.

of non-linear systems. We will establish such local theory in this subsection.
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3.1.1 Integral Equation

We will always assume F is continuous. The nonlinear system with initial condition

dy _

dt - F(y7t)7 Y(tO) = E € R"

can be equivalently formulated as the integral equation

y(t)=§ +/t F(y(s), s)ds.

0

(75} (t)

Let us introduce the operator T" on the space of column functions u(t) = : in ¢ by
un(t)

t

(Tu)(t) =¢& +/ F(u(s), s)ds.

to

Then the integral equation can be expressed as

y="Ty.

In other word, y(t) is a fixed point of the operator T'. It reduces the problem on solving
the equation to the study of fixed points of T. This can be analyzed in terms of the Banach

Fixed-point Theorem, aslo known as the Contraction Mapping Theorem.
3.1.2 The Contraction Mapping Theorem
Let (X, d) be a metric space. A mapping
T:X—->X
is called a contraction mapping if there exists a constant A with 0 < A < 1 such that
d(T(x), T(y)) < Ad(z,y),  Va,y€X.

Here d(z,y) is the distance between x and y. Thus a contraction mapping brings points closer.
Note that T is necessarily continuous.

In the next, we will assume (X, d) is a complete metric space, i.e. , every Cauchy sequence
in X has a limit. When X is a vector space, and d(z,y) = || — y|| comes from a norm || - ||, a
complete normed linear space is also called a Banach space.

A point z € X is called a fixed point of T if
Tr =x.

In other words,  will remain the same after the mapping by T'.
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Theorem 3.1.1 (Contraction Mapping). Let T' : X — X be a contraction mapping on a

complete metric space (X,d). Then there exists a unique point x € X such that
Ty =z,
i.e., T has a unique fized point.
Proof: Let xp be any point in X. We define a sequence {x,} in X by
Tpt1 = Ty, for n > 0.

Equivalently, x,, = T™xq is the nth iteration of T on x.

For any n > m > 1, the contraction property implies

d(l’n, xm) Sd(.’L’n, xn—l) + d(xn—la xn—2) R d<xm+1; xm)
=d(T™ Yy, T tag) + d(T" 22y, T 220) 4 - - + d(T™x1, T™x0)
<A N2 oA™Y d (1, 20)

m

<— .
=71 _ )\d(xlax())

Thus {x,} is a Cauchy sequence. Since X is complete, {z,} converges to a point € X. Then

Tx =T lim z, = lim Tz, = lim x4 =2
n—oo n—oo n—oo

i.e. , x is a fixed point of 1. This proves the existence.

Assume z and y are two fixed points of T. Then
0 <d(z,y) = d(Tz, Ty) < Md(z,y)
= d(z,y) = 0.

So x = y. This proves the uniqueness. O

3.1.3 Lipschitz Condition

To apply the Contraction Mapping Theorem to obtain a solution of the integral equation,

we need some control on F. Let U be an open subset of R” x R and
F(y,t): U — R™

be a continuous function, where y € R"™ and ¢t € R. We say F satisfies the Lipschitz condition

in U with respect to y if there exists a constant L > 0 such that

|F(y17t) - F(y27t)’ < L’Yl - y2‘

for all (y1,t), (y2,t) € U. Here | - | for a vector is the Euclidean norm.

A typical example is when U is convex, F(y,t) is C! in y, and all partial derivatives
0, F| <M, y={y',- y"}
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are uniformly bounded. Then F(y,t) is Lipschitz in U with respect to y. In fact, using

y17 ) F(y27 )

/ —F(y2 + s(y1 — y2), t)ds

_/0 ((y1 —vy2) - V)F(y2 + s(y1 — y2), t)ds

we find
|F(y17 ) (y27 )’ < M’Yl Y2‘

e. , the Lipschitz condition holds with L = M.

3.1.4 Existence and Uniqueness

We now analyze the contraction property of the operator 1" arising from the integral equa-

tion with the help of the Lipschitz condition. Let
C([to —&,to +¢],R")

be the space of continuous functions from the closed interval [ty — ¢, to + €] to R™. We equip it

with the norm || - ||« defined by

t = a t
(e =, max (o)
The norm || - ||oo is complete. This follows from the fact that the uniform limit of a sequence of
continuous function is itself continuous. Therefore (C([to — &,t0 + €], R™),|| - ||oc) is a Banach
space.

Now consider the initial value problem

dy

dt F(yvt)7 Y(tO) =¢£.

We assume F satisfies the Lipschitz condition in U C R™ x R with respect to y. For the initial
condition, we require

(Ev tO) el.

We choose sufficiently small numbers € > 0, > 0 such that
B(€,0) x [t —e,tg+¢] C U.
Here B(£,6) C R™ is the closed ball of radius & centered at &. Let
X.5={x(t) € C([to — &, to + €], R") | x(t) € B(£,0),Vt € [ty —&,t0 + €]}

If we treat £ as an constant function element of C([ty — ¢,t9 + €], R"™), then X, is the
closed ball in C([tg — €,tg + €], R™) of radius ¢ centered at &

Xesg={xeC(lto — &, to + ], R") | [[x(t) — &0 < 0}
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Thus X, s is also a complete metric space.
Recall the operator T from the integral equation
t
(Tx)(t) = & —i—/ F(x(s), s)ds.
to
Assume x(t) € X, 5. We have
t
(Tx)(t) — & < [ [F(x(s),s)|ds.
to
Since F is continuous, let

K = max [F(y,t)| < 4o0.
(y,t)€B(&,6) x [to—e,to+e]

Then
[(Tx)(t) — &| < [t —to| K.

By Shrinking ¢ if necessary, say Ke < ¢ holds, then Tx will lie in X, 5. Thus we will choose a

sufficiently small € such that
T : X&(s == X&(s

defines a map from X, 5 to itself.

Let us now analyze the contraction property. Let x;(t),x2(t) be two elements of X, 5. Then
[(Tx1) () = (Tx2) ()]

/t (F(x1(s), 5) — F(xa(s), 5))ds

< t |F(x1(s),s) — F(xa(s), s)|ds

SL/ |x1(s) — x2(s)|ds

to

<Lellx1 — x2floo
holds for any t € [tg — ¢,tp + €]|. Here L is the Lipschitz constant. This implies
|Tx1 — Tx2llo0 < Le||x1 — X2]|00-

Therefore by further shrinking ¢ if necessary, say Le < 1 holds, then T is a contraction mapping

on X, 5. Now we are ready to prove the local existence and uniqueness theorem.

Theorem 3.1.2 (Picard-Lindel6f). Let F(y,t) : U — R™ be a continuous function from an open
subset U C R™ x R to R™, which is Lipschitz with respect to y. Assume U contains the point
(&,t0). Then for sufficiently small € > 0, there exists a unique function y(t) on the interval
(to — &,tp + €) solving the following initial value problem

d

ay:F(y,t), te(to—eto+e)

y(to) =&
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Proof: Since the question is for sufficiently small €, the statement is the same for either (9 —
g, to+¢€) or [tog — &,tg + ¢]. By choosing sufficiently small § > 0, > 0 (as we discussed above),

the operator T'
t

(Tx)(1) = & + / F(x(s), 5)ds

to

defines a contraction mapping on X.s. Since X, s is a complete metric space, we obtain a

unique fixed point y(¢) of T' by the Contraction Mapping Theorem. The relation Ty =y, i.e.

y(t) =€+ / F(y(s), 5)ds

0

implies that y(t) solves the required initial value problem. O

Remark 3.1.3. The proof is in fact constructive. It shows that the solution can be found by the

limit of the iteration process of T'. This is called Picard iteration.

Remark 3.1.4. If we only assume F is continuous but not require Lipschitz condition, then local
existence still holds. This is the Peano Existence Theorem. We will not prove this general
existence theorem here. The basic idea is that the iterated sequence by T may not converge
now, but will have a convergent subsequence by using the Arzela—Ascoli Theorem. However,
different choices of convergent subsequence may lead to different limits, so uniqueness may fail.

For example, consider

v =VIyl,  y(0)=0.

0, t<O0,
y(t) & { 2

&, t>0.

It is clear that both y = 0 and

solve the equation, but they are different in any small neighborhood of ¢ = 0.

Finally, we observe that the local existence and uniqueness only requires Lipschitz condition

locally. We make this precisely by introducing the notion of local Lipschitz condition.

Definition 3.1.5. Let U be an open subset of R” x R and
F(y,t): U =R

be a continuous function, where y € Rt € R. We say F(y,t) is locally Lipschitz in U with
respect to y if for any point p € U, there exists an open neighborhood V' C U containing p such
that F is Lipschitz in V with respect to y.

Theorem 3.1.6. Let F(y,t) : U — R" be a continuous function from an open subset U C R™ xR
to R™, which is locally Lipschitz with respect to y. Then for any point (§,tg) € U, there exists

a unique solution y(t) to the initial value problem

dy _

dt F(y’ t)v Y(tO) =£

on the interval (tg — e,to + €), for sufficiently small e > 0.

Proof: This follows directly from Theorem 3.1.2. O
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3.2 Extension of solutions

In the previous subsection, we have established the existence and uniqueness of local solu-

tions to the initial value problem

dy _

dt F(y7 t)a Y(tO) =&

for F Lipschitz with respect to y. We now consider how far the solution can be extended.

3.2.1 Maximal Interval of Existence

We first observe that once two solutions coincide at some point, they will be the same on

their defining domains.

Proposition 3.2.1. Let F(y,t) : U — R™ be a continuous function from an open subset
U C R” xR to R™, which is locally Lipschitz with respect to y. Let (&,tg) € U. Let y;(t) be
a function on the interval (o, B;) containing to, for i = 1,2, which both solve the initial value
problem

Vv, yw=¢

Then yi(t) = ya(t) for max{ay, a2} <t < min{f;, f2}.

Proof: Let = min{f1, B2}. We consider the forward time part for ¢t € [ty,3). The other

direction is similar. Assume y;(¢) and y2(¢) are not the same on [tg, 3). Let

7 =inf{t € [to, B) | y1(t) # y2(1)}.

We have g < 7 < f and yi(7) = y2(7). Let n = yi(7).
Applying Theorem 3.1.6 to the point (n,7), we find a sufficiently small £ > 0 such that
y1(t) =y2(t) on t € (1 —e,7 4+ ¢). This contradicts the definition of 7. O

Now we come to the maximal interval of the solution of an initial value problem.

Theorem 3.2.2. Let F(y,t) : U — R" be a continuous function from an open subset U C R™ xR
to R™, which is locally Lipschitz with respect to'y. Given (&,tg) € U, there exists t_ <ty < t4

and a function y(t) on (t_,t}) solving the initial value problem

Y_®0.  yi)=¢ (¥

which is maximal in the following sense: if y(t) is another solution of (x) on some interval
I > tg, then
IC(t_,ty) and  y(t)=y(t) fortel.

Here t+ could be 0.
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Proof: Define
t— =inf{a : () is solvable for a < t < ¢y}

t+ =sup{p : (x) is solvable for ty <t < S}
Note that if y;(t) solves (%) for ¢ € [to, ) and y_(t) solves (%) for ¢ € («,to], then by the
uniqueness of local solution, y4(¢) glue to define a solution for ¢ € (v, 3).

Let us choose intervals
to € (a1, p1) C (g, B2) T+ C (a,Bn) C -+ C (t—,t4)
such that a,, — t_, 8, — t4. Let y,(t) solves (x) on the interval («,, 3,). By Proposition 3.2.1,
Ynt1(t) =yu(t),  for t€ (an,Bn)
Then we define the solution y(t) on (t_,t4) by
y(t) =yn(t)  ifte (an,Bn).
It is readily checked (Using Proposition 3.2.1 again) that such y(¢) has the required property. [

The next proposition provides a useful tool to analyze global existence of solutions.

Proposition 3.2.3. Let y(t) be a mazimal solution defined on (t_,t;) in the sense of Theorem
3.2.2. Assume ty < 4oo. Then for any compact set K C U, there exists € > 0 such that
(y(t),t) ¢ K forty —e <t <ty. In other words, the solution will run out of K eventually

after certain time. There is a similar result in the negative time direction if t— > —oo.

Proof: Let us concentrate on t € [tg,t). First, we can find a larger compact set K c U and

6 > 0,e > 0 such that

BE,d)x[t—et+e]c K V(1) EK.

Since K is compact and F is locally Lipschitz, we can find a constant L such that (Exercise 1)

|F(y1.t) — F(y2,t)| < Lly1 — y2l. V(y1,t), (y2,t) € K.
Let M > 0 be chosen such that
sup [F(y,t)| < M.
(yt)eK

This can be achieved since K is compact. Shrinking e if necessary (M can be fixed), we can

assume £ < min{%, +}. We claim that the maximal solution y(t) has the property that
(y(t),t) ¢ K when t,—e<t<ty.

In fact, assume (y(7) =€, 7) € K for 7 € (t4 —¢,t4). By the proof in Theorem 3.1.2, our

choice of € implies that the contraction property of T holds, leading to a solution of
dy
— =F(y,t =
Yy v =g
on the interval (7 —e, 7+ ¢). This implies that the solution y(t) can be extended to [to, 7 + €).

But 7+ ¢ > t4, contradicting the definition of ¢ . O
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3.2.2 Gronwall’s Inequality

Proposition 3.2.4 (Gronwall’s Inequality). Let f : [a,b] — R be continuous and satisfies
f(t)SC—l—k/tf(s)ds a<t<b
for some constants C, k with k > 0. Then
f(t) < Cekt=a g <t <b.

Proof: Define a function g(t) by

By assumption
It follows that

Thus

O

As an application of Proposition 3.2.3 and Grénwall’s inequality, we show the global exis-

tence of solution for all time when F is at most linear growth.

Proposition 3.2.5. LetF(y,t) : R" xR — R" be a continuous function which is locally Lipschitz

with respect to y. Assume there exists positive constants k and C such that
[F(y,t)| < kly| + C.

Then the solution y(t) of the initial value problem

dy
o —Fwt), y(0)=¢
exists for all time t € (—o0, +00). Moreover,

(0) < gl + T 1)

Proof: Let (t_,t4) be the maximal interval for the solution as in Theorem 3.2.2. We show

ty = 4+00. The proof for t_ = —o0 is similar. Suppose t; < 4+00. Define

g(t) = [y (@)].

Using the integral equation
¢
y(0) =€+ [ Fr(s),o)ds
0
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and the Linear growth condition, we have

mw<m+£&m¢+mw

i.e.,
(g(t) + i) < <\£\ + i) + /Otk <g(8) + i) ds.
Applying Gronwall’s inequality to f(t) = g(t) + %
= Mﬂ+§?<<€%+i>e“, 0<t<ty.
Therefore
(o)< S -1+ lelet, o<t<t
Assume t; < 4o00. Then y(t) will always stay in the following compact region for 0 <t <t
K= {(y,t) c R" x ]R'y| < %(ekt+ —1) + [€]ef+,0 <t < t+}.
This contradicts Proposition 3.2.3. ]

Global solution at all time may or may not exist when F goes beyond linear growth. For

example, the solution for

dy o
—_— = 7 0 — 1
I y(0)
is y(t) = 1%, whose maximal interval of existence is (—o0, 1). For another example, consider
dy 2
o y y(0)
This is not linear growth. But the solution
1
t ==
v =117

exists at all time.

3.3 Dependence on Initial Data

A mathematical problem modeling a reasonable physical system is called well-posed if it

satisfies the following requirements

@ Existence: the problem has at least one solution
@2 Uniqueness: the problem has no more than one solution

@ Continuous dependence: the solution depends continuously on the data given.

So far we have established the local existence and uniqueness of the initial value problem
of the non-linear system

dy

a = F(Y7t)7 Y(tO) =£

for F with local Lipschitz condition. In this subsection we will prove the continuous dependence

of the solution on the initial data. This establishes its well-posedness.
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3.3.1 Continuous Dependence on Initial Value

Theorem 3.3.1. Let F(y,t) : U — R" be a continuous function from an open subset U C R™ xR
to R™, which is locally Lipschitz with respect to y. Let (&, to) € U. Let yo(t) be a solution of
% = F(yo,t) on the interval (o, B) > to with initial condition yo(ty) = &y. Then

(i) For every a < t1 < tg < ty < (3, there exists a neighborhood V. C R™ of &y such that the

initial value problem
dy

dt = F(ya t)7 Y(tO) =£

has a solution ont € (t1,t2) for any € € V.

a t1 to to 15}

(ii) Let y(t,&) denote the solution with initial condition y(to) = &€ for € € V as in (i). Then

there exists nonnegative constants L, M such that

y(t',€) = y(t,€)| < M|t —t] + & — €Ml

for any &€,&" € V and t,t' € (t1,t2). In particular, y(t,€) is Lipschitz continuous as a
function of (t,€) on the domain (t1,t2) X V.

Proof: We consider the forward time part on [tg,?2). The discussion on (1, tg] is similar. They

combine to prove the theorem. Consider

Ko = {(yo(t),t) | t € [to,t2]} CU

which is a compact subset of U. Let § > 0 be sufficiently small such that

K= |J B(y(t),0) x {t} cU.

te(to,t2]

o

yo(t)
Ky

to to B
Since K is compact and F is locally Lipschitz, there exists L > 0 such that (Exercise 1)

|F(y17t) - F(y27t)| < L|Y1 _y2’7 V(yl,t), (y27t) € K.

Let V' be the open ball
V = B(g&, e L20)g)

o1



We show that for each £ € V, the initial value problem

dy _

dt F(y’ t)v Y(tO) =£

has a solution on [tg, t2) with the required property.
In fact, for & € V, let [to,t+) be the maximal interval of the solution y with y(tp) = £ in
the forward time. By the choice of V', y(¢) will lie inside K at least for ¢ close to tg. Let

g9(t) = [y(@®) —yo(®)l,  to <t <min(ty,ta).

Using the integral equation

ﬂﬂ=€+/F@@ﬁﬂs

to

yo(t) = &o +/ F(yo(s),s)ds

to
and the Lipschitz condition, we have (for ¢ close to t)

g9(t) <|& — &l + [ [F(y(s),s) = F(yo(s),s)lds

to

t
sm—m+L/g@w.

to
Hence by Grénwall’s Lemma
9(8) < 16 — &ole" .

Since £ € V, € — &o| < de—Llt2=t0) | thus
g(t) <6.

This means that the solution y(t) will stay inside the compact space K for typ < ¢ < min(t4,t2).
By Proposition 3.2.3, this implies ¢, > t2. Thus the solution y(¢) exists on [tg,t2), and the

above application of Gronwall’s Lemma gives

ly(t) — yo(t)| < |€ — &oekt—10)

for £ € V and t € [to,t2). This proves (i).
Let y(t, &) denote the solution with initial condition y(to,€&) = & for £ € V in forward time

as above. It satisfies the integral equation

ﬂt®=$+/FW@Qwﬂs

to

and
(y(t,€),t) € K, V&€V, telty,ta).

The same argument as above via Grénwall’s Lemma implies
IY(tasl) - y(tv€)| < ‘S/ - £|6L(t_t0), v £,a€ € V7 te [to,tz).
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Since K is compact, there exists M > 0 such that
F(y,t)| <M,  V(y.t) € K.
Then for any &€,&" € V and t,t’' € [to,t2), we have

ly(t', &) —y(t, &) < |y, &) —y(t, &) +|y(t, &) — y(t,€)]
tl
< / F(y(s,&"), 5)|ds + [y(t, £) — (£, €)|
< M|t —t] + |& — gleklt—tol,

This proves (ii).
O

Remark 3.3.2. From the proof, we see that the case for either & = —o0 or 8 = +oc is allowed.
However, the condition ¢; > «,ty < [ asks that (t1,%2) is a finite interval. Such shrinking of

intervals for nearby solutions is necessary. For example, consider

For & = 0, the solution y(t) = 0 exists at all time. For £ # 0, the solution is y(t) = ﬁ, where
the maximal interval of solution is (—oco,£71) for € > 0 and (671, 4+00) for € < 0. It is also clear
from this example that the bigger the finite interval (¢1,t2), the smaller the neighborhood of

the initial condition that we have to restrict to.

Y= 57}_15 (5 > O)

| |
| |
| !
| |
| |
| |
| |
| !
! |
| |
| |
| |
| |
| |

|
| |
| |
| |
! !
! !
| |
| |
| |
1 1

p—

i i Y= f—%,[ (5 < 0)
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3.3.2 Continuous Dependence on Parameters

Now we consider the case when the equation itself can vary with some parameters. Let us
write F = F(y,¢,A) where X collects the parameters. We consider the initial value problem
V_ByeN, v =¢
Then the solution y(¢,&, A) will depend both on the initial value & and on the parameter A.
This problem can be reduced to what we have studied in the previous Section 3.3.1. In

fact, solving y(¢, &, A) is the same as solving the initial value problem of the enlarged system

@ =F(.t.2) wity, J Y0 =€
% =0 Z(to) =A

This reformulation, together with Theorem 3.3.1, immediately leads to the following theorem.

Theorem 3.3.3. Let F(y,t,A) : U — R™ be a continuous function from an open subset U C
R™ x R x R™ to R™, which is locally Lipschitz with respect to (y,A). Let (&o,to,No) € U.
Let yo(t) be a solution of dsto = F(yo,t,Ao) on the interval (o, ) > to with initial condition
yo(to) = &. Then

(i) For every o < t1 < tg < ta < 3, there exists a neighborhood V- C R™ x R™ of (&y, Ao) such

that the initial value problem

dy .
E e F(yvt’ A)v Y(tO) T 5

has a solution on t € (t1,t2) for any (§,A) € V.

(it) Let y(t,&,X) denote the solution with initial condition y(to,&) = & for (§,X) € V as in

(i). Then there exists nonnegative constant L, M such that
Y€ N) =y (66N < MIE — 1]+ (J& = €]+ [N = Aeti

for any (&, X), (&, N) € V and t,t' € (t1,t2). In particular, y(t,&€, ) is Lipschitz contin-

uous as a function of (t,&, X) on the domain (t1,t2) X V.

3.3.3 Differentiability

In this section, we show that the solution is differentiable with respect to the initial data if
F is C'. Before we move into technical details, let us first discuss intuitively what the derivative
with respect to the initial data should look like.

Let y(t, &) be the solution to the initial value problem

yl - F(Y? t)a Y(tO) =& (*)

Here the parameter £ represents initial data at tg. Assume y(¢, &) is also differentiable in &. Let

us compute the derivative in the &;-direction at € = &

D,y (t, &) := lim y(t, & + 85;) —y(t.&)
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To simplify notation, let
yo(t) = y(t, o)
which solves

a0 = F(yo, 1), yo(to) = &o-

dt
Let
y1 (t) = D£1Y(t> EO)
Applying the &;-direction derivative on both sides of (x)

d

d
%)ﬁ(t) —%D&Y(t, o)

0
:D€1 (é)tY(t’ €)> ngo

= De, (F(y(t,€),1))le—,
= Z Bij(y(t, EO)? t)‘D£1yj (t7 EO)

=DF(yo(t),t)y1(t)

where y = (y7) is the column vector and DF is the matrix
(DF);; =0,F',  F=(F.
Moreover, the initial condition gives

y1(to) = D¢, Y(to,ﬁ)!g:go =&

In other words, y;(t) solves

% = DF(yo(t),t)y1(t)

yi(to) = &1
This linear system has a unique solution for given yo. This solution y;(¢) is reasonable to

be the candidate for the &;-direction derivative of y(t, &) at & = &, as illustrated by the above

calculation. This is indeed the case.

Theorem 3.3.4. Assume F(y,t) is C' on U C R*xR. Let (&o,t0) € U and yo(t) be the solution
of % = F(yo,t), yo(to) = &o, on the interval (o, ) 2 tg. For any a < t1 <ty < ty < 3, and
& €R™, let y(t,e) be the solution of

0

o ¥(t:2) = F(y(t,),1

y(to,e) = &o + &

on the interval (t1,t2) and for € sufficiently small, as guaranteed by Theorem 3.3.1. Let yi(t)

be the solution of

d
% = DF(yo(t),t)y1, a<t<§,
yi(to) = &1
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Here DF is the matriz (DF);; = 8,; F" where F = (F"). Then

lim ly(t,€) — yo(t) — ey1(t)|
e—0 E

=0
uniformly for t € (t1,t2). In particular, y(t,€) is differentiable in & for & near & and

De,y(t,&) = y1(t), t <t <t

Proof: We consider only the forward time ¢ € [tg,t2). We have the integral equation

t
y(t2) = &+ c€1 + / F(y(s,c), 5)ds

to

yo(t) = &o + /ttF(YO(S)aS)dS
t
yi(t) =& + [ DF(yo(s),s)yi(s)ds

\ to

The solutions exist on ¢ € [tg, t2] for e sufficiently small by Theorem 3.3.1.
Let g(t,e) = [y(t,€) — yo(t) — ey1(¢)|. Then

g(t,e) = / (F(y(s,¢),5) = F(yo(s),5) = eDF(yo(s), s)y1(s))ds

to

<I(t,e)+ [ [IDF(yo(s),s)ll g(s,e)ds

to

where

I(t,e) = / [F(y(s;€),5) — F(yo(s),s) = DF(yo(s), s)(y(s,) — yo(s))] ds|.

to

Since F is C', there exists M > 0 such that

IDF(yo(s), s)| <M,  to<s<t
t
= g(t,e) < I(t,e)+ M [ g(s,e)ds.

to

Again using F is C!,
F(Y(37€)7 S) - F(YO(8)7 S) - DF(yO(S)7 5)(3’(‘975) - YO(S))

= [ R Gy(s.6) (1= a)3als). s)do ~ DR(3os):8)(3(5:) = ¥0()

:/0 [DF (zy(s,e) + (1 — x)yo(s),s) — DF(yo(s), s)] - (y(s,e) — yo(s))dx.

Since F is C!, it is locally Lipschitz. By Gronwall’s inequality, there exists L > 0 such that

for € sufficiently small
¥(s,8) = yo(s)| < el€rle"710) <elgy|ehlzTr0) gy < s <t

and
lim (DF(xy(s,e) + (1 —x)yo(s),s) — DF(yo(s),s)) =0

e—0

o6



uniformly for tg < s < t3. In follows that

I(t
lim 7( .€)

=0 uniformly for tg <t < to.
e—0 g

Applying Gronwall’s inequality again to g(¢,¢), we have

te) < I(t,e)eM(t—to) to <t <t
9(,6)_t0r;1?§>§2 (t,e)e , 0<t<ty

torgtaﬁxtz g( ’6) B torgl?éxb ( ,8)6

It follows that

¢
lim g(t,€)

=0, uniformly on tg <t < ts.
e—0 S

g

Remark 3.3.5. We could also consider the case when the equation varies with parameters. As
explained in Section 3.3.2, the parameter-dependence problem can be reduced to the initial
value problem. This allows us to show the differentiability of the solutions with respect to the

parameters by Theorem 3.3.4. We leave the details to the reader.
Example 3.3.6. Consider the nonlinear system

o =x+y°

y=-y

The solution with initial condition z(0) = 0,y(0) = 0 is the equilibruim one

(1)

Thus the variation of the solution with respect to the initial condition at ¢ = 0 along the

o A .
direction is
A2
a:l(t) . etA )\1 . )\16t
Y1 (t) )\2 )\ze_t
In other words, let x(t, \;), y(t, \;) be the solution with initial condition z(0) = Ay, y(0) =
Xo. Then the 1st order approximation is
z(t,\) ~ Ael, y(t, \) = dge” .
In fact, we can solve the exact solution and find
t At -2t
z(t, Ni) = Me’ + F (e —e™)

Yt Ai) = Age™"
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3.4 Analyticity

We have established the well-posedness of the initial value problem for the non-linear system

dy B

In this section we deal with the issue of analyticity of the solutions, which is established by the
celebrated Cauchy-Kovalevskaya Theorem. This is extremely useful since it allows us to study
the solutions in terms of power series, in other words, order by order. We will study power

series solutions in Chapter 4.

3.4.1 Analytic Function

We will mainly deal with real analytic functions, though the discussion extends easily to

the complex analytic case. Let us first recall the notion of real analyticity.

Definition 3.4.1. A function f(x) is real analytic on an open subset U C R if it is a smooth

function and the Taylor series at any point xg € U
oo
f(n) (.’Z‘o) n
> (@)
n=0

converges to f(z) for x in a neighborhood of .

Remark 3.4.2. The definition of complex analytic function f(z) is obtained by replacing, in the
definition above, “U C R” with an open subset “U C C”. It turns out that a function is complex

analytic if and only if it is holomorphic.
Example 3.4.3. Polynomials, e”,sin(z), cos(z) are real analytic on R.

Example 3.4.4.

<0

e‘i z >0

is smooth but not analytic in any neighborhood of 0. In fact, the Taylor series of f(z) at 29 = 0

is identically zero.
The following is an useful equivalent description for analyticity, which we omit its proof.

Proposition 3.4.5. f is real analytic in U if and only if f is smooth and for every compact

set K C U there exist positive constants C,r such that

!
fM@l<es, vreKn>o.
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3.4.2 Cauchy-Kovalevskaya Theorem

We first consider scalar autonomous differential equation

dy _

7= fw, y0)=wekR.

Theorem 3.4.6 (Cauchy-Kovalevskaya, ODE version). Assume f is real analytic on a neigh-

borhood U of yo. Let y(t) be the unique solution of the initial value problem

% =fly),  y(0)=uyo

on some interval (—e,€) for sufficiently small e > 0. Then y(t) is real analytic on (—¢,¢).

Proof: We prove via the “method of majorants”. Without lost of generality, we can assume
yo = 0. Otherwise we can consider the shift y(¢) — y(t) — yo and f(y) — f(v + vo)-
. e d
By repeatedly differentiating 3 = f(y), we find

yM =f(y)
y@ =D (y)y® = fO(y) f(y)
¥y =A@ f(y)* + D) f(y)

Y = (f@)ji)n_l i)

It is clear that there are universal (independent of f) polynomials P, with non-negative

integer coefficients such that

y" = Pu(f @), FV () V().
We look for a function g with non-negative derivatives at zero such that
g™(0) 2 [fM),  ¥n=0.

Such a function g is called a majorant function of f. Assume such a g is chosen. We will come

back to its construction at the end. Let u(t) solve the initial value problem

Wy, u0)=o0.

Then we also have

u(n) - Pn(.g(u)ag(l)(u)7 T 7g(n71)(u))'

By the choice of g and the fact about the nonnegative coefficients of P,,, we have

1PL(£(0), fD(0), -+, fmD(0)] < Pa(g(0),gV(0), - , g™ D(0))

Thus
™ (0)] < [u™(0)],  Vn>o0.
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Let us assume u is analytic near zero. We will show this below for the constructed majorant

function g. Then the power series
() (o) _
>_ a0

has a positive radius of convergence. It follows that the power series

()= Yy 0

n>0

will also have a positive radius of convergence and analytic near zero. The function 7'(t) satisfies
Vn >0 (%)

7™ (0) = y™(0),

We next show T'(t) = y(t) near zero. First, we observe that (%) implies (via the chain rule)

<ccllt> t:Of(T(t)):<;i> t:Of(y(t)% Yn >0
Thus o o
7 == 1(4) = o(n+1)
(&) | rao=(5) | vo-vo
Consider the function
e(t) =T'(t) - f(T(t))

=0, Vn > 0.

The above calculation shows
d n
(o) =100 - () | IT0) =500 -4 000)
t=0
On the other hand, since f and T are analytic, e(t) is also analytic near zero. Then

e(™(0) = 0,Vn, implies e(t) = 0 identically near zero. Thus

dT
= =1),  T(0)=0.

By the uniqueness, y(t) = T'(t) near zero, hence analytic near zero.
It remains to construct a majorant function g and show that the solution wu(t) of
du
— = g(u), u(0) =0
U gw), u(0)
is analytic near zero. From the analyticity of f, there exist constant C,r > 0, such that
|
(n) n
|f (0)|SCT”’ VYn > 0.
Then we can simply choose
> .n
T C
n=0 r

Clearly, g(n) (0) = %, hence
17 (0)] < g™ (0) holds Vn > 0.
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Now let us consider the solution u(t) for

du C
= g(w) = +Cg, u(0) =0,

i
We can use separation of variable to solve this

(r —u)du = Crdt
= ru — %uz =Crt

u? = 2ru+2Crt =0

=
= u=r+vVr2—-2rCt

0)=0 2Ct
u(:)> u=r—ry/1——
”
It is clear that u(t) is analytic near ¢ = 0. O

Now we discuss the generalization to a system

Theorem 3.4.7 (Cauchy-Kovalevskaya, ODE version’). Assume F(y) is analytic in a neigh-
borhood of €. Let y(t) be the unique solution of the initial value problem

Y_vy),  y0)=¢

on some interval (—e, ) for sufficiently small e > 0. Then y(t) is analytic on (—¢,€).

Proof: The above proof of Theorem 3.4.6 can be modified slightly and adapted to this case. We

leave this to the reader. O

Remark 3.4.8. In general, for the initial value problem of a nonautonomous system

%}t’ =F(y,t), y0)=¢&

we can describe it equivalently by

2y
() EP 1
dz _ 1

dt
This will be reduced to Theorem 3.4.7.

Remark 3.4.9. For the ODE version of Cauchy-Kovalevskaya Theorem, the above proof via the
method of majonants is not the simplest one. However, this method can be used in the PDE

version as well. Nevertheless, the proof via method of majonants is clearly beautiful.
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Chapter 4 Power Series Solutions

In this chapter we study a general linear ODE
ao(t)y™ + a1 (t)y" Y + - a,(t)y +b(t) = 0

where the coefficients a;(t),b(t) are analytic on certain domain of our interest. We can write

the above equation as

Y™ + p1 )y o)y o pu(t)y Fq(t) =0

where p;(t) = Z;((?) and q(t) = abo(z)' We say

o to is an ordinary point of the equation if all p;(¢) and ¢(¢) are analytic near t = t.
e otherwise, tg is a singular point of the equation.

Similarly, we will consider a linear system

dy _

o = At) ¥y +b(t)

where entries of the matrix A(¢) and the vector b(¢) are quotients of analytic functions on

certain domain of our interest. We say

o to is an ordinary point of the system if all entries of A(t) and b(¢) are analytic near t = .
e otherwise, tg is a singular point of the system.

The above two definitions are consistent. It is clear that ¢y is an ordinary point of a linear
ODE if and only if ¢y is an ordinary point of the associated 1st-order linear system.
The goal of this chapter is to understand solutions of linear ODE around certain points of

interest (ordinary or singular) in terms of power series.

4.1 Ordinary Point

Let us start with a linear ODE

y(n) + pl(t)y(nfl) —i—pg(t)y(”’m + o pa(y +q(t) =0
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around an ordinary point ¢ = ty. By assumption, p;(¢) and ¢(t) are analytic near ¢ = ty. By
Cauchy-Kovalevskaya Theorem (Remark 3.4.8), solutions are analytic near ¢ = to, and therefore

can be written as a convergent power series
o0
y(t) =Y enlt —to)™.
n=0

Substituting this back to the equation will allow us to solve the coefficients {¢, } recursively
order by order. We look at some examples to illustrate.
Example 4.1.1. Consider the initial value problem

(I+t)y' =py,  y(0)=1

where p is an arbitrary constant.
This equation has analytic coefficients, and ¢ = 0 is an ordinary point. The unique solution

is analytic near ¢t = 0 and has a power series expansion
y(t) = co + it + ot + -+ cpt™ + - -

The initial condition sets cg = 1. Substituting the power series into the equation, we find

o o0
Z((n YA o et = chnt”
n=0 n=0

Comparing the two sides, we find

(n+ 1)cpy1 + nen, = pen, n=20,1,---

= r—%
Cntl = Cn.-
n+1 ] n
Recursively,
—Dp—=2)---(p— 1
¢ = P=Dp=2)(p n+)7 Vi > 1.
n!
Therefore the solution is given by
—1 —1)---(p—n+1
ym:1+m+mzlhﬁw~+mp )n@ S 4.

Note if p is a nonnegative integer, then the series becomes a polynomial of degree p.

On the other hand, we can explicitly solve the equation and find
y(t) = (L +t)P.
It is clear that the above found series is precisely the Taylor series of (1 + ¢)P centered at t = 0.
Example 4.1.2 (Legendre’s Equation).
(1—*)y" —2ty' + p(p+ 1)y =0
where p is a constant.
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We can write the equation as

" 2t p(p + 1)

/
— + =0.
Voroel T e
It is clear that the coefficients lzttg and 2 gp_ +t21 ) are analytic near ¢ = 0. The origin is an ordinary

point and therefore we expect power series solutions
o0
y(t) = Z ant™ near t = 0.
n=0

Substituting this power series into the Legendre’s equation, we find

(n+1)(n+2)aptes — n(n — Da, — 2na, + p(p + 1)a, =0, Vn >0

(p—n)p+n+1)
(n+1)(n+2)

We have two free parameters ag, a1, which are to determined by the initial condition. In fact,

Gn4+2 = — n

ap = y(0), a1 =y(0).

All other a,,’s are expressed via ag and a1 in terms of the above recursion formula

~ plp+1)

ag——71.2 ag
__-1Hl+2)

as — 2.3 al
_plp—2)(p+1)(p+3)

a) = Al a

40y ==V =3)+2)p+4)

5!

The power series solution is given by

y(t) =ao [1 _ et P =D+ DR +3) s PP =D -+ VP +3)P+5) 6 ]

2! 4! 6!

+ay [t_(p—l)('p 2)t3 (p—l)(p—3)5(!p+2)(p+4)t5
—D(p—3)p—5)p+2)(p+4)(p+6
(p=D-3)@ )7(!]) Yp+4)(p )t7 }

e When p is not an integer. Each series in brackets has radius of convergence R = 1. This
can be proved by ratio test (show this). The functions defined by the above power series
are called Legendre functions. One important feature is that these functions are in general
not elementary functions, and so can not be expressed via finite compositions of rational,

trigonometric, hyperbolic and exponential function.

e When p = n is an nonnegative integer, one of the series in the bracket terminates and is

thus a polynomial. The polynomial P,(t) of degree n satisfying the Legendre equation
(1—t2)y" =2ty +n(n+1)y=0
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with P,(1) =1 is called Legendre polynomial. Explicity they are given by

P(f) = 1 av , n B
n(t)_znn'dtin@ _1) ) 7’L—0,1,2,"'
Example 4.1.3 (Airy Equation).

y' —ty=0

The origin is an ordinary point, and we look for power series solutions
o
y(t) = Z ent” near t = 0.
n=0

Substituting into the Airy equation

oo oo
Z(n +2)(n + 1)cpgat™ — Z cn—1t" =0,
n=0 n=1

we obtain the recursion relation

Cn,
=0 A\ n>0.
@=% BT 3 nte) T
The general solution of Airy’s Equation is
(8) =0 [1+ 2 = Gioose=p a +
=C
Y= T 537 2.3.5.6 TR Y- | (3n — 1)(3n)
4 t7 t3n+1
t
+Cl[+3.4+3.4-6.7+ T3 @Bt ]

The series in each bracket converges for all ¢, which can be shown via the ratio test. These
functions are called Airy functions.

One important expression for Airy function is through the integral in the complex plane

y(t) = 2%” Fe(f_tz)dz

where I' is a contour in the complex plane starting and ending at oo along directions such that
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Re(% —tz) — —o0. Here below are three possible choices of I'

Each T'; will lead to a solution to the Airy equation

yi(t) = : /F‘e<z33_tz)dz.

" omi

However, they are not independent. We have

1 24,
y1(t) +y2(t) + ys(t) = / 6(3 t>dz:0
I'i+T2+I'3

T 2mi

since I'y +T's +1I's essentially forms a closed loop in the complex plane and hence can be shrinked
to zero without varying the value of the complex integral, by Cauchy integral formula.

It turns out that any two of yi(t), y2(t), y3(t) form the two linearly independent solutions
of the Airy function. Let us check that Airy’s equation holds.

1 23 1 .3
271 T, r,

21

Here the choice of I'; guarantees that the boundary in the above integral does not contribute.

4.2 Linear System with Regular Singularity

4.2.1 Regular Singular Point
We consider the linear system

dy
T A(t)y
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in the region where the matrix A(t) is continuous. This equation can be explicitly solved via
the path-ordered exponential. Moreover, when A(t) is analytic, solutions will also be analytic.
In this section, we study the case when A(¢) could have singularities. We consider the

simplest type of analytic singularity defined as follows.

Definition 4.2.1. The point ¢ = % is called a regular singular point or a singularity of the first

kind for the linear system % = A(t)y if

where B(t) is analytic near t = tg.

So at a regular singular point, the coefficient A(t) has a pole of at most order = 1. Without

lost of generality, we assume the regular singularity is at tg = 0. In this case, we can write
Ay = ) Agth
k>—1

where Ap’s are n X n matrices and A_; represents the coefficient of the pole. Our aim is to
understand how the solutions behave near such a regular singularity.

Before we discuss the general theory, let us first look at a few examples.

Example 4.2.2.

b
y = -y, b € R is a constant.

t

This equation can be solved using separation of variables
= y(t) = ct
where c is a constant.

Example 4.2.3.

1
y = ;By, B is a constant n X n matrix.

This can be solved in a similar fashion formally by

where £ is a constant column vector.
Since B is a matrix, we need to clarify the meaning of t%. Precisely, we can define tZ via

the exponential matrix
(B ._ Blnt

This expression is well-defined for ¢ > 0. In the region ¢ > 0, we have

ieBlnt — lBeBlnt
dt

thus y(t) = eB"t . £ are indeed solutions.
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In general, it is better to think about ¢ as a variable in the complex plane C. Then these
solutions will have branches of their defining domain, and analytic continuation around the

origin will lead to a transformation of solutions.

C

Int— Int 4+ 273

Indeed, when t goes around the origin, the function Int undergoes a transformation to

Blnt

Int 4 27i. Hence the matrix e will change by

€B Int eBlnteQmB

—

The transformation 2™ is called the monodromy.

We will not go much into the complex analytic perspective, but instead work with the real
domain for ¢ > 0 in the forward time in our current context. Let us look closely at the matrix

Blnt

function e . There are essentially two main cases of building blocks.

@D Assume B is diagonalizable and

A
B=P p!
An
Then
et nt A
eBlnt _ p pl_p p-1
eAnInt thn
Thus the solutions are of the form
th
y(t)=P Ple.
thn

Equivalently, if we change variables and define

68



then the equation becomes

A1
d 1
An
which is reduced to n scalar equations
Z1 (t)
Ai .
A0 = Sat), ) =
zn(t)
@ Assume B is of the form of a Jordan block
Al 0 1
A 0
B = =AM, + N, N =
o
A 0
Then {
n=1 a7k
6Blnt :e)\ln Int+Nlnt _ t)\eNlnt N t)\ Z F(ln t)k
k=0
A Pt ... P “‘}j!:kl A (l(r;t_);,:
A A(nt)*~ A(nt)"=
t Urrysssf (‘;ﬁ_l)! 2. 1t (2_2)!
tr  tnt
0 A

This matrix will give the explicit form of the solution y(t) = e?"’¢. Note that

lim Bt — 0 if A>0
t—0+ blow-up if A <0

The above two examples illustrate the main features of solutions near a regular singular

point. The general case can be essentially reduced to the above as we next show.

4.2.2 Gauge Transformation

Let us consider a change of variables
y(t) = y(t) = P(t)z(t)

where entries of the matrix P(t) are analytic functions near ¢ = 0 and det P(t) # 0 near ¢t = 0.

Thus P(t) is invertible near ¢t = 0 and its inverse P(¢t)~! also consists of analytic entries.
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Under this change of variables, the equation becomes

dt
& %z(t) = <P—1(t)A(t)P(t) - P‘l(t)dtP(t)> z(t).

This new equation is of the same form as before but changes

A(t) — P A®R)P(t) — P7L(t)—P(t)

dt
This will be called a gauge transformation.

Two linear systems, whose coefficient matrices are related by gauge transformations, are
equivalent under the corresponding change of variables as above.
Proposition 4.2.4. Assume tA(t) is analytic neart = 0. Let A(t) = 5. Atk and assume no

k>—1
eigenvalues of A_y differ by positive integers. Then there exists a gauge transformation P(t)

such that
d B A_4
=—

Proof: Let us first look for a formal power series
P(t)=> Pt
k>0

that will do the job. Then we show its convergence. Plugging the above series into the equation

d oy POAL

A@P() - SP(t) = 2=

and comparing t-orders of both sides, we need to solve

A 1 Py=PyA_4
k-1
(A_1 - k[n)Pk —PLA_ 1 =— ZAiPkflfi, k> 0.
=0

We can solve the first equation by simply choosing
Py =1,.

By assumption, A_y — kI, and A_; have no common eigenvalues for any k£ > 0. Then by
Lemma 4.2.5 below, P, can be uniquely determined for k£ > 0. Thus we have found the required

formal series P(t) = > Pyt
k>0
We next show P(t) is analytic near ¢ = 0. By the above recursive relation

k—1
kPe=A1Py— PeAy + ) AiPeoioi.
=0
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Taking the operator norm of both sides, we have

k-1
Kl Pell < 20 A1 Pell + D 1Al Prma—ill
1=0

Let N be a positive integer such that
2I|1A4]| < N —1.

Then for kK > N, we have

k—1
1Pell <> 1A Prril-
i=0
Let us define
[ Pl k<N

uk = k—1
> JJAillug—1—; B> N
i=0

Then we have || Py|| < uy for any k& > 0. It is enough to show that the power series

o
u(t) = Z upt”
k=0

is convergent near ¢t = 0. Let

a(t) =) [l Axlit*

k>0

By assumption, a(t) is convergent near ¢t = 0. By construction, we have

u(t) = ta(t)u(t) + f(t)
where f(t) is a polynomial of deg < N — 1. Therefore

_f®)
) =T m

which is clearly analytic near ¢ = 0. O

Lemma 4.2.5. Let M,(C) denote the space of n x n complex matrices. Let U,V € M,(C)

without common eigenvalue. Then the linear map

M, (C) - M, (C)
X—=XU-VX

is an isomorphism

Proof: Exercise. O
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4.2.3 Solutions in General

Now we discuss how to solve

dy
— = A(t
i (t)y

in general around the regular singular point ¢ = 0. Let
Aty = Agth
k>—1
D If no eigenvalues of A_; differ by positive integers. Then by Proposition 4.2.4, we can find
a gauge transformation y(t) = P(t)z(t) such that z(t) satisfies

dz A_1

i z(t).

Then the solutions can be found by Example 4.2.3 and
y(t) = P(t)e -1
where £ is some constant vector.

@ If there are eigenvalues of A_; which differ by positive integers. Assume A_; is of the

Jordan form

where
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Note that @Q(t) is not a gauge transformation since Q(¢t)~! will be singular at ¢ = 0.

Nevertheless, we can use this to derive an equation for z(t)

da(t)
= = B(t)z(t)

where
_ 1 d
B(t) = Q7' (HAMQ) - Q7 () Q).
Observe B(t) is also regular singular. Let B(t) = > Byt*. Then B_; is of the form
k>—1
Ak
A
0 0
*
A
B_; = A+k—1 *
Atk-1
* *
*
A+k—1
0 0

The difference of the corresponding eigenvalues decreases by one. Now we can transform
B_; into a Jordan form and repeat the above process. Eventually we will arrive at the

situation in (D.

4.3 Scalar Equation with Regular Singularity

4.3.1 Regular Singular Point
We next consider the scalar linear equation of order n
v 4+ pr @)y 4 pa(t)y =0 (%)
near a singular point.
Definition 4.3.1. We say ¢t = tg is a regular singularity of (x) if t = ¢( is a singular point and
(t — t0)*pi(?)
is analytic near t = tg for any k. A singular point that is not regular is called irregular.

In other word, at the regular singular point, px(¢) may develop a pole but the pole order
is at most k for pi(t). This definition is related to the regular singularity of 1st-order linear
system as follows.

Assume t = 0 is a regular singular point of (x). Define
Zz(t) = ti_ly(i_1)7 1= 17 27 N
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We have
tzp = (i — 1)z + Zi1, =12 ,n-1L

The above scalar linear equation then becomes the 1st-order linear system

0 1
21 1 1 z1
d | %2 1 2 1 29
- —
Zn, n—2 1 Zn
—t"pu(t) oo e o —Ppa(t) m—1—tpi(t)

Now it is clear that t = 0 is a regular singular point of () if and only if ¢ = 0 is a regular
singular point of the above lst-order linear system. Therefore these two notions of regular
singularity are consistent. This relation will also help us to understand the solution near a

regular singular point of (x) via the result of Section 4.2. Let

0 1
1 1
1 2 1 k
At) = 5 S Y = > At
; y k>—1
n—2 1
—t"pp(t) e e o —2pa(t) n—1—tp1(t)
The singular part of A(t) corresponds to
0 1
1 1
2 1
A=
n—2 1
_an o oe. o oe. DY —a2 n_]-_a/]_
where
ak:limtkpk(t), k=1,2,---,n.
t—0

The characteristic equation of A_1 is
det()\In — A,1) =0
i.e.
AA=1) - A=n+1)+XA=1)---A=n+2)ay
+AXA=1--A=n+3)ag+ -+ AXA—1)ap—2+ Aap—1+a, =0
This equation is called the indicial equation of (x) at a regular singular point ¢ = 0.
If roots of the indicial equation do not differ by positive integers, then our analysis of linear

system with a regular singularity immediately yields the structure of the solutions of the linear

equation (%) near a regular singularity.

74



Example 4.3.2. Legendre’s equation
(1—t)y" =2ty +p(p+1)y =0, p is a constant
has regular singularities at ¢ = £1.
Example 4.3.3. Euler’s equation
t2y" + aty’ + By = 0, a, 3 are constants
has a regular singularity at ¢t = 0.
Example 4.3.4. Bessel’s Equation
t2y" +ty' + (£ — )y =0, a is a constant
has a regular singularity at ¢ = 0.
Example 4.3.5. Hypergeometric Equation
t1—t)y" +[c— (a+b+1)tly' — aby =0, a, b, c are constants
has regular singularities at t = 0 and ¢t = 1.

4.3.2 Method of Frobenius

Let us focus on linear equations of order two

Y +pt)y +qt)y =0

with a regular singularity at t = 0. Let
oo oo
tp(t) = pat",  qt) = gat"
n=0 n=0

which are analytic near ¢ = 0 by assumption.

The method of Frobenius looks for a series solution of the form

o0 (o0
y=1t" Z ant" = Z ant™tm
n=0 n=0

where we require ag # 0. Plugging the above series ansatz for ¢ into the equation, we find

(n+m)(n+m—1)a, + Z((m + k)agpn—k + arxgn—r) =0, Vn > 0.
k=0

Equivalently, we can write this as a recursion relation

n—1

((n+m)(n+m—1)+ (n+m)po + qo)an = — Z ax[(m + k)pn—k + gnk]-
k=0
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Recall that the indicial polynomial of our second order equation is
JA) =AA=1) 4+ Apo + qo-

Then the above recursion relation becomes

n—1

fn+m)an == ar[(m+ k)pn—k + gn#)-
k=0

For n = 0, this relation gives
f(m)ag =0 = f(m)=0.

In other words, m is a root of f(A), i.e. , a solution of the indicial equation. This is compatible
with our discussion in Section 4.2.

For n > 0, assume f(n 4+ m) # 0 for any n > 0, i.e. , the other root of f(\) is not of the
form m +n for a positive integer n. Then we can solve a,,’s recursively for all n > 0, and obtain

a series solution -
y(t) =™ ant".
n=>0

oo

By our general discussion in linear system, the series Y a,t" will be analytic near ¢t = 0. This
n=0

is the series solution in Frobenius form, or Frobenius series.

Now we can summarize the above discussion as follows.

(D Assume f(A) has two distinct roots mq,mg such that m; — mg ¢ Z. Then we find two

Frobenius series solutions of the form
o0 o
™ Z ant™, $ma Z bt
n=0 n=0

@ Assume f(\) has two distinct roots m; < mg and mg —m; is a positive integer. Then we

have at least one Frobenius series solution of the form

o0
m2 Z bt
n=0

o0

We may or may not have another Frobenius series solution "™ Y a,t". It depends on
n=0

the solvability of @y,,—m,. If in the recursive relation

mo—mi—1

Z a‘k[(ml + k)pmz—m1—k + ng—ml—k] = 0
k=0

then we can set @,,—m, = 0 and continue to find a second Frobenius series solution. If

the above is not zero, then there can not exist a second Frobenius series solution.

@ Assume f(\) has two roots m; = mg. Then we have only one Frobenius series solution.
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4.3.3 Hypergeometric Series
We consider the example of hypergeometric equation
t1—8)y" +[c—(a+b+1)tly —aby =0
where a, b, ¢ are constants. We write it as
y' +pt)y +a(t)y =0

where
_c—(a+b+1)t B ab
p(t) = =1 q(t) = D)

The points t = 0 and t = 1 are regular singular points. We consider near ¢ = 0. Then

c—(a+b+1)t n
tp(t) = (1_t ant

abt >
2 _ o n
tQ(t)_ 1_t—ZQnt
n=0
where
pn=c—(a+b+1) n>1, and  pg=c,
Gn=—ab n>1, and q0 = 0.

The indicial equation is
AA=1)+Ac=0

whose roots are

m1:0, ﬂ’LQ:1—C.

If 1 — ¢ is not a positive integer, then we have a Frobenius series solution of the form

o o
y=t" Z apt” = Z ant™.
n=0 n=0

Plugging this into the hypergeometric equation

t(1—t) <Zantn> [c—(a+b+1) <Zant”> —ab (iaﬂ") =0

and comparing with the coefficient of ¢t", we find

[—n(n —1)an + (n + 1)nan41] + [e(n + 1apy1 — (a + b+ 1)nay] — aba, =0

(n+a)(n+b)
(T D+ o)

We simply set ag = 1 and find the Frobenius series solution

= apy1 =

a(a+1)---(a+n—-10bb+1)---(b+n—-1) ,
_1+Z n‘c(c—|—1) (c+n—1) !
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This is known as the hypergeometric series and we denote it by F'(a,b,c,t). It generalizes the

familar geometric series which corresponds to

1
F(l,b,b,t) — 17_1:

If 1 — ¢ is not an integer, then we will have a second Frobenius series solution of the form

o0
y =t Z bt™.
n=0

We can also see this by a change of variable

Plugging this into the hypergeometric equation, we find
tl—0)2"+[2-¢c)—(a—c+ 1)+ (b—c+ 1)+ 1t} —(a—c+1)(b—c+ 1)z =0.
This is again of the form of hypergeometric equation. We have a Frobenius series solution by
z=Fla—c+1,b—c+1,2—¢,t).
Therefore when c is not an integer, a general solution of the hypergeometric equation is
y = aF(a,b,c,t) + pt1Fla—c+1,b—c+1,2 — ¢, t)

where «a, 8 are constants.
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Chapter 5 Boundary Value Problem

We have so far focused on initial value problems for solving differential equations with
specified data at a single point. Now we move on to discuss the boundary value problem. This
is to study solutions of differential equations defined on the interval I = [a,b] with prescribed

data at both boundary endpoints ¢t = a and t = b.

5.1 Boundary Value Problem for Second Order Equations

We start with boundary value problem for second order linear equations

ao(t)y” + ar(t)y' + az(t)y = g(t) (*)

with continuous coefficients on the interval I = [a, b] such that ap(t) # 0 for t € I. These include

a large class of important equations with numerous applications in science and engineering.

5.1.1 Boundary Conditions

These are three most common types of boundary conditions for the equation (k)

(i) Dirichlet boundary conditions (boundary conditions of the first kind)
y(@) =&, yb) =&
(ii) Neumann boundary conditions (boundary conditions of the second kind)
Y =&, () =6&
(iii) Robin boundary conditions (boundary conditions of the third kind)
ary(a) + fry'(a) =&, azy(b) + Bay/ (b) = &

In contrast to the initial value problem where general existence and uniqueness are estab-

lished, solutions of boundary value problem may not exist or may not be unique.
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Consider the simple example
y" =0.

The general solution is y(t) = ¢1 + cat where c, are constants The Dirichlet boundary condition
can be always uniquely solved by y = & (a 5 +§ N a . The Neumann boundary condition has
no solution if &1 # & and infinitely many solutions if & = & by y = ¢1 + &1t

5.1.2 Sturm-Liouville Form

We can always rewrite equation (*) into the form

& (o) + et = 1) ()

This equation (*x) is called in the Sturm-Liouville form, or the self-adjoint form. The operator

L= (v03) +at)

is called the Sturm-Liouville operator.

To see how to turn (*) into the Sturm-Liouville form, we can multiply () by

a1 (s)
1 ef: a(l)( yds
ao(t)

Then (%) becomes

aq(s) ay(s)
e/at a5 98 (y// 4 ai(t) o as(t) y) 7 e/at Ok g( )
ao(t) ao(t) ao(t)

= (p(t)y") + q(t)y = f(t)

where TS
aq
p(t) _efa ao(s)d
aq(s)
a(t) =220 L G5t
ao(t)*
9(t) _J s as
t ap s
ft) = o)’

From this computation, we also see that p(t) is continuous differentiable and positive on I.

Thus we will focus on the boundary value problem

Ly = (p(0)y') +q(t)y = f(t) on I = [a, b]
By := ary(a) + f1y/(a) = & att=a ()
Boy = ay(b) + B2/ (b) = &2 att =10

where p(t) € CY(I) with p(t) > 0 and q(t), f(t) € C°(I). {, B:, &} are real numbers and

(051,51) 7& (070)> (042,,32) 7é (070)

The problem (5) is called the boundary value problem of Sturmian type.

80



For any two functions u(t),v(t) € C%(I), the following identity holds
vLu — ulv = (p(u'v —v'u)).

Here L is the Sturm-Liouville operator as above. This identity is called the Lagrange identity.

One important consequence of Lagrange identity is
Proposition 5.1.1. Assume Bju = B;v =0, (i =1,2). Then
b
/ (vLu — uLv)dt = 0.
a
Proof: By Lagrange identity

b b
/ (vLu — uLv)dt = p(u'v — v'u)

a

Let us consider the point a. By assumption

(u(a) u’(a)) <a1> _ (Blu> o
v(a) v'(a)) \ B By
Since (o, 1) # (0,0), we have

det G €) =uv’ — u'v’ =0
) t=a ’

Similarly, (uv’ — u'v) ‘ —p = 0. Therefore the boundary term vanishes

p(u'v — U'u)‘z = 0.

This proposition says L is self-adjoint on functions with required boundary conditions.

5.1.3 Homogeneous Problem

Given the boundary value problem (.S), we will consider the corresponding homogeneous

boundary value problem

Lu=0 on I = [a,b]
Biu=0 att=a (H)
Bou =0 att=1>

Since the equation is linear, a general solution y of the inhomogeneous problem (.S) can be
written in the form
y=y +u
where y* is a special solution of the inhomogeneous problem (S) and w is a general solution
of the homogeneous problem (H). As a consequence, if the homogeneous problem (H) has
only the trivial solution u = 0, then the inhomogeneous problem (S) has at most one solution.
Actually, we shall show that there exists exactly one solution in this case, i.e., the triviality of

the homogeneous problem (H) also implies the solvability of the inhomogeneous problem (.5).
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Theorem 5.1.2. The inhomogeneous boundary value problem (S) is uniquely solvable if and

only if the homogeneous boundary value problem (H) has only the zero solution.

Proof: Assume the homogeneous problem (H) has only the zero solution. We are left to show

that the inhomogeneous problem (.S) can be solved. Let us consider the linear equation
Lu=0

without requiring any boundary conditions. By the general theory of linear ODE, there exist
two linearly independent solutions u;(¢) and usa(t) such that a general solution of Lu = 0 can

be written as a linear combination
u(t) = crug (t) + caua(t), ¢ € R

For u(t) to satisfy the boundary condition Biu = Bou = 0, we need to find ¢1, ¢ such that

Biui Biug\ [a _o
B2u1 BzUQ (&) .

By assumption, this can have only trivial solution ¢; = co = 0. This is the same as saying that

Biuir  Biug

the matrix < > is invertible.

Bgul B2U2
Now let v(t) be any solution of the equation

Lv=f

without requiring any boundary condition. Such v always exists. A general solution of Ly = f
can be written as

Y =0+ Cc1u] + caua.

For y to solve the inhomogeneous problem (.S), we need to find ¢y, ¢2 such that the boundary

condition Byy = &1, Boy = & hold. This is equivalent to solve
Biuy Biug\ (e (& — B
Bouy  Baug) \c2 §2 — Bav

. Biuy Biug\ | . . . . . . .
Since is invertible, this matrix equation has a unique solution. O
Bouy  Baug

Remark 5.1.3. The proof of the theorem implies that the unique solvability of the inhomogeneous

Biu, B
det( 1 m) £ 0.

Bouy  Bous

problem (S) is equivalent to

Here uq,us are two linearly independent solutions of Lu = 0.
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Example 5.1.4. Consider the boundary value problem

y'+y=f(t), 0<t<nm
By =y(0)+4'(0) =&
Bay = y(m) = &2

The corresponding homogeneous equation
u +u=0
has two linearly independent solutions

u1(t) = cost, ug(t) = sint.

B B 1 1
det 1 12 = det =1
Boui  Baus -1 0

the above boundary value problem has a unique solution.

Since

If we change the boundary conditions to consider instead

y'+y=f(t), 0<t<n
By = y(0) =&
Boy = y(m) = &2

Blul 31U2 1 0
det = det =0
Boui  Baus -1 0

The homogeneous problem has infinitely many solutions

Then

u(t) = csint, ceR.
The following inhomogeneous boundary value problem

y' +y=0, 0<t<n
y(0)=0, y(m) =1

has no solution.

5.2 Green’s Function for Second Order Equations

5.2.1 Idea of Green’s Function

We are interested in solving the equation

Ly =f, tel=1lal]
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with certain boundary conditions B = (Bj, Ba) on 0 = {a,b}. We have shown in Theorem

5.1.2 that if the homogeneous boundary value problem
Lu =0, with Biu=Bsu=0

has only the trivial solution u = 0, then the above inhomogeneous problem is uniquely solvable.
The situation is very similar to the problem in linear algebr. Let A be an n x n matrix.
Then the linear equation
A-x=b

is uniquely solvable if and only if the homogeneous equation
A-u=0

has only the trivial solution u = 0. In this case, the matrix A is invertible, and the above

inhomogeneous equation is uniquely solved by
x = A"'b.
Back to our problem, we hope to solve the equation Ly = f in a similar fashion by
S 6.

This turns out to be the case, and the inverse L~! is called the Green’s operator. More precisely,

we will construct a function G(¢,s) such that the expression

b
y(t) = / G(t, 5)f (s)ds

solves the equation Ly = f. Comparing with the matrix case x = A~'b where in components
€T, = Z A;jlbj,
J

the expression
b
y(t) = / G(t,s)f(s)ds

can be viewed as an infinite matrix multiplication by replacing

At — Gt s).

Thus the function G(¢,s) can be viewed as representing the inverse of L
L' = G(t,s).
This function G(t, s) to be constructed is called the Green’s function.
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5.2.2 Construction of Green’s Function

We assume that the homogeneous boundary value problem (H)
Lu=0 on I, Bju=Byu=0

has only the trivial solution u = 0.

Let u; be a nonzero solution of
Luy=0 on I, Bju;=0.
This can be obtained by solving the initial value problem
Lup=0, w(a)=6&, wuy(a)=m
where (£1,71) is chosen such that
Biuy = a1§ + fim = 0.
Let ug be a nonzero solution of
Lus =0 on I, Boug=0.
This can be obtained by solving the initial value problem in the backward direction
Lup =0,  uz(b) =&,  up(b) =m2
where (£2,72) is chosen such that
Baug = azés + Sanz = 0.

Such w1, us are uniquely determined up to a rescaling constant by the linearity of the problem.
Now we claim that these two functions u; and ug are two linearly independent solutions of

Lu = 0. In fact, if us = Aup for some constant A # 0. Then
Bius = ABjuj; = 0.
Thus us solves the homogeneous boundary value problem
Lus =0, Biug = Boug = 0.

By assumption, us = 0 and this is a contradiction. Thus wu;, us are linearly independent.

By Lagrange’s identity,
(p(ulu'g — UI1U2))/ = w1 Lug — usLuy = 0.
Therefore the quantity p(ujub — ujus) is independent of t. Let this constant be
C = p(uyuly — ujus).
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Note that this constant C' # 0. Otherwise

et (W “2<a>> S0y

ui(a) uy(a)

Then the initial data (ug2(a), u5(a)) will be proportional to (u;(a),u)(a)), hence u; and ug will

be linearly dependent by the linearity of the equation.

Definition 5.2.1. We define the Green’s function G(¢,s) by

Lui(Hu s), a<t<s
G(t,s) = cufuals), a<ts<

%Ul(S)UQ(t), a<s

IN

b
t<b.

IN
IN

Proposition 5.2.2. The above defined G(t,s) satisfies the following properties
O G(t,s) is continuous on (t,s) € I x I.
@ G(t,s) = G(s,t) is symmetric.
@ The derivatives 0,G, 0}G, 0,G, 0*G exist and is continuous away from the diagonal t = s.

@ On the diagonal t = s, the one sided limit

oG (t1,t) :== lim 0,G(x,t)

r—tt

0G(t™,t) :== lim 0,G(z,1)

Tt~

exist and they differ by

0,G(tT,t) — 0,G(t™,t) = POk

® Let

denote the Sturm-Liouville operators in the variable t and s respectively. Then

LiG(t,s) = LsG(t,s) =0, at  t#s.

Proof: D@B®) are obvious. We prove @. By construction

QG 1) = lim, %ul(t)ug(gg) _ %ul(t)u;(t)
AG(t 1) = lim %u'l(x)t@(t) _ %u/l(t)ug(t)
Thus . .
KG(tT,t) — Gt t) = 5(u1(t)ul2(t) — uy (t)us(t)) = o)
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5.2.3 Solution via Green’s Function

Theorem 5.2.3. Assume the homogeneous boundary value problem (H) has only the zero

solution. Then the following semi-homogeneous boundary value problem
Ly=f on I, Biy=DByy =0
s uniquely solved by ,
y(t) = / Gt 5)f(s)ds.
Here G(t,s) is the Green’s function in Definition 5.2.1.

Proof: We show the function y(t) defined by y(t) = f; G(t,s)f(s)ds solves the required bound-

ary value problem. Let us first check the boundary conditions. By construction

B

Biy ==~ [ ua(s)f(s)ds =0
B

By = === | w(s)f(s)ds =0

as required.

Let us now consider the differential equation. We can write y(t) as two contributions

t b
o) = [ Gles)sis+ [ Gtes)sis)as
t b
:%UQ(t) /a X0 f(s)ds+éu1(t) /t s (s) £(5)ds.

This allows us to compute its derivatives by
t b
/(0 =gs(t) [ ) f(s)ds+ Guit) [ (o) r(s)as
t b
(0) [ w6 f(s)ds+ i) [ wals) f(s)ds
+ G (u (1) — Sub(uad) f(1)
(1)

Loy [ 1,
:CuQ(t)/a u1(s)f(s)ds+cu1(t)/t uz(S)f(S)dSer-

Ly = S En0) [ w6+ Sn) [ w10 = 10,
O
Remark 5.2.4. For those who are familar with distributions, the properties in Proposition 5.2.2
LiG(t,s) =0 t#s

Gt t) — 0G(t,t) = p(lt)
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implies the distributional identity
L:G(t,s) = 0(t — s).

This says that G(¢, s) is the solution of the semi-homogeneous boundary value problem with a

d-function source. Therefore the general source case is solved by the superposition

b
/ G(t, 5)f(s)ds.
Then
b b b
Lt/ G(t,s)f(s)ds :/ LiG(t,s)f(s)ds :/ (it —s)f(s)ds = f(t).
The equation L;G(t,s) = §(t — s) is another way to express G(t,s) as the inverse of L.

d(t, s) can be viewed as the identity matrix in the infinite dimension case.

Remark 5.2.5. For general inhomogeneous boundary value problem
Ly=f on I, Biy=&, Bwy=%&
we can first find the unique solution v = cju1 + coug of

Lu=0 on I, Biu =&, Bou=6&

<B1U1 Blu2> (C1> A (&)
Bauy  Baus) \c2 )

Then the above equation is reduced to the semi-homogeneous case

by solving

Lly—u)=f—-Lu=f  Bi(y—u)=By(y—u)=0
which is solved by
y(t) = u(t) + /bG(t,s)f(s)ds.
Example 5.2.6. Consider the boundary value problem on I = [0, 1]
y'=f1),  y0)=y) =0

The required solutions w1, ug of

u{ =0 wu1(0)=0
uy =0 uy(l)=0

are found by
ul(t):t, 'LLQ(t) =t—1.

The constant C' = wjuy — ujug = 1. The Green’s function is

G(t,5) t(s—1) 0<t<s<1
7S:
st—1) 0<s<t<1

The corresponding Dirichlet boundary value problem is solved by
¢ 1
y(t) = (t — 1)/ sf(s)ds + t/ (s —1)f(s)ds.
0 ¢
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5.3 Boundary Value Problem in General

5.3.1 Linear System and Green’s Matrix
We consider the boundary value problem for first order linear system
y = A(t)y +£(t) on I = [a,b]
By :=Twy(a) +T2y(b) = §

Here y(t) is the column of n unknown functions. A(t) is an n x n matrix varying continuously
with respect to t on I. I'y,I'y are constant n X n matrices, and £ is a constant column vector.
We will write the above equation as

d
Ly =f  where L= prie A(t).

Example 5.3.1. The initial value problem corresponds to

Iy =1, 'y =0.
Example 5.3.2. Consider the boundary value problem of Sturmian type (.5)

(py') +aqy=f
By = ony(a) + 1y (a) = &
Bay = agy(b) + By (b) = &

We can turn this into the first order system by introducing y = ( y/). Then the above
py

boundary value problem becomes

o BL 0 0 ¢
L b0 a .
( 0 >y( )+ <a2 g2> y(b) <€2>

0 p(b)
This corresponds to the boundary value problem of first order linear system with

0o 12 L1 0 0
A= 7). m=(" @) =
0 0 a2 Ly

Let
fP(t):?(efiA>, a<t<b
be the path-ordered exponential (Definition 2.3.1). This nxn invertible matrix function satisfies
S9(0) = AWPW)
dt”
Pla) =1,
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If we write P(t) as n column vectors

P = (W) w) - ),

then {uy,--- ,u,} form n linearly independent solutions of the homogeneous equation
du
— = A(t)u.
o = Al

The linear independency follows from the invertibility of P(¢).

A general solution of the inhomogeneous linear system
Ly=f

can be expressed as

y=v+cau +---+cpuy
where v is a special solution of Lv = f. In matrix form, this is
C1

C2
y = v+ Pc, where ¢ =

Cn
To solve the boundary condition, we need to find constants ¢ such that
B(v+Pc) =¢

(T1P(a) + ToP(b))c = € — (T'1v(a) + Tyv(b)).

The situation is very similar to the boundary value problem of Sturmian type. The unique

solvability of ¢ is equivalent to the invertibility of the matrix I'yP(a)+T2P (), which is equivalent

to that the homogeneous matrix equation

(' P(a) + DaP(b))e = 0

has only the trivial solution. This is equivalent to that the homogeneous boundary value problem

Lu=0
Bu =T1u(a)+T'2u(b) =0

has only the trivial solution v = 0. Thus we have proved

Theorem 5.3.3. The inhomogeneous boundary value problem Ly = f, By = £ on the interval

1 is uniquely solvable if and only if the homogeneous boundary value problem Lu =0, Bu =0

has only the zero solution on I.
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Let us now assume the homogeneous boundary value problem Lu = 0, Bu = 0 on [ has
only the zero solution. We look for an n x n matrix function G(¢, s) such that the inhomogeneous
boundary value problem

Ly =f, By=0

is solved by

Such G(t,s) is called the Green’s matrix.
To construct G(t, s), let v be the special solution of Lv = f by (Theorem 2.3.3)

v(t) = P(¢) / P=1(5)f(s)ds.

Let
R = Fl’P(a) + FQ?(b) =T+ szp(b)

which is invertible by assumption. Let y = v+ P(t)c. We need to solve
Re = — (Tyv(a) + Lav(b)) = —Tav(b)
= c=— R 'T'yv(b) = —R'T1,P(b) /ab P~1(s)f(s)ds.
It follows that
y(t) =v(t) + P(t)e
=P(t) /a t P(s)f(s)ds — P(t)R™ToP(b) /a b P~1(s)f(s)ds
_ / DOH(E 5) — RTyP ()P (5)f(s)ds

where H(z) is the Heaviside step function

H(x):{ 1, x>0,

0, z<0.

We find the Green’s matrix to be

G(t,s) = P(t)(H(t — s) — R™ToP(b)) P~ (s).

5.3.2 Nonlinear Equation

We discuss some basic ideas for solving nonlinear boundary value problems in terms of

Green’s functions. Consider the boundary value problem

Ly = f(yat) on [= [avb]
Biy =0 at t=a
B2y:0 at t=>
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For example, we can consider the Sturm-Liouville operator L with the boundary condition
By, Bay as before. We can use Green’s function to transform this boundary value problem into

an integral equation

b
ymz/GmWW@@m

The equivalence of this integral equation with the boundary value problem is proved in the

same way as in Section 5.2.3. The quickest way to see this is to use the distributional identity
LG(t,s) =d(t —s)
Then )
Ly(t) —/ LG(t,s)f(u(s),s)ds
a

- /ba(t 9 f(u(s), s)ds = F(u(t). ).
Example 5.3.4. As an illustration:lwe consider the following Dirichlet boundary value problem
y'=fyt) onI=][0,1]
y(0) =y(1) =0

The corresponding Green’s function is computed in Example 5.2.6

Gt s) ts—1) 0<t<s<1
78 =
s(t—1) 0<s<t<1

Let us consider the integral equation
1
) = | Git.5)f(u(s).5)ds.
0
Assume f is continuous and satisfies the following Lipschitz condition with respect to y

‘f(ylvt)if(y27t)| SL|y1*y2|7 L > 0.

We can try to solve the above integral equation using contraction mapping as in Section

3.1.4. In fact, define the transformation
1
T)0) = [ Gt.s) (o). 5)ds.
0
The integral equation is the same as the fixed point equation

y="Ty.

Under the above Lipschitz condition, we obtain

1
WWJMW=AQWWMMQ#mMW%

< ([ 166.91d5) Llon -
= </0ts(1 —t)ds + /t1 t(1— S)dS) L|ly1 — y2so

1 1
:(5752(1 — 1)+ 5t(1— £)*)Llly1 — vl

1
SgLHyl — y2|loo
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Taking the max of the left hand side, we have
0<t<1

L
1Ty1 — Ty2lloo < < lly1 — v2llco-

Therefore if the Lipschitz constant L < 8, the transformation 7" is a contraction map and
we obtain a unique solution of this nonlinear boundary value problem.
A more careful estimate shows that if L < 72, then this nonlinear Dirichlet boundary value

problem is uniquely solvable, and this constant 72 is sharp. Consider the case

We will treat the linear term on the right as f(y) = —w2y which is Lipschitz with L = =2

There are infinitely many solutions
y(t) = csint, ceR

For another example, consider

where f(y) = —7m2(y+ 1) which is Lipschitz with L = w2. A general solution of y"" = —7w2(y +1)
takes the form

Yy = cpcosmt + cosinmt — 1.

There are no ¢, ¢z such that the boundary condition y(0) = y(1) = 0 holds. Thus there is no
solution in this case.
5.4 Compact Self-adjoint Operators

We will digress for a moment to recall some basic properties for compact self-adjoint oper-

ators in preparation for the Sturm-Liouville eigenvalue problem in Section 5.5.

5.4.1 Inner Product Space

Definition 5.4.1. A R(or C) inner product space is a R(or C)-linear space H equipped with a

mapping (called inner product)
(,+): Hx H— R(or C)

such that the following hold

@ Symmetry: (f,g9) = (g, f)
@ Linearity: (af 4+ Bg,h) = a(f,h) + (g, h)
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@ Positivity: (f, f) > 0 for f # 0.
Here f,g,h € H, o, € R(or C).

An inner product space is a normed space. The norm of a vector f € H is defined to be

£l = (5 )

Remark 5.4.2. An inner product space is called a Hilbert space if it is complete as a normed

space, t.e. , a Banach space.
Example 5.4.3. Let I = [a,b] and
C(I) = {continuous functions on I}.

This can be equipped with an L?-inner product

b —_
(f.g) = / F(2)g(@)dz.

The induced norm is denoted by

b
1fll2 = / | f () |2da.

This inner product space C(I) is not a Hilbert space. It can be completed to a Hilbert

space L?(I) which consists of measurable functions f(x) such that

/b |f(z)2dz < +oo.

Then C(I) becomes a dense linear subspace of L2(I).

5.4.2 Compact Self-adjoint Operators

Definition 5.4.4. Let H be a R(or C) inner product space and 7' : H — H be a linear operator.
T is called

D bounded if the norm of T' defined by

1T} := sup [[Tf]]
Lfll=1
feH

is finite.

@ self-adjoint if
(Tf,9)=(fTg), Vf,geH.

@ compact if for every bounded sequence { f,} in H, the sequence {T'f,} has a convergent

subsequence with limit in H.
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A compact operator is bounded. For a bounded linear operator T, we have
1T <7 VfeH.
Proposition 5.4.5. If T is bounded and self-adjoint, then

(Tf,f)eR, VfeH

and
|IT|| = sup [(T'f, f)I
=1
T
Proof:

(Tf. f)=(£,Tf)=(Tff)
= (Tf,f)eR.

Let us denote

M = sup [(T'f, f)l.
i

Using the Cauchy-Schwartz inequality

(Tf, HL TN < ITHILFIP

we have M < ||T||.
On the other hand, for any f € H with ||f|| = 1. Let A = [|Tf||. Then using

(T(Tf+Af),Tf+Af) = (T(Tf = Af),Tf = Af)
=2N(Tf,Tf)+2NT*f, f) = AAITf|? = 4N°

we find
N <MTF 4 AP+ MITS — Af|?
oM (TS + X IP) = 402
= A<M
Since f is arbitrary = ||T|| < M. Thus ||T']| = M. O

Definition 5.4.6. If T'f = Af for f # 0, then X is called an eigenvalue of T and f is called an

eigenvector.

Proposition 5.4.7. Let T be a compact self-adjoint operator in the inner product space H.
Then any eigenvalue A of T satisfies
AL < I

and there exists an eigenvalue \g such that |\o| = ||T]|.
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Proof: Let A be an eigenvalue of 7' with nonzero eigenvector f € H. We can assume || f|| = 1.
Then T'f = Af implies
Al =(TF, NI < IT].
To determine an eigenvalue Ao with |A\g| = ||T'||, consider a sequence {f,} in H with
| fn]| = 1 such that
(T fry fr)| = IT)| as n — +o0.

Since T is compact, {T'f,} has a convergent subsequence with limit in H. Moreover, since
(T fn, frn) is bounded, we find a further subsequence such that (7' f,, f,) has a limit. Replacing

{fn} by appropriate subsequence, we can assume both the following limits exist
(Tfn, fr) > X €R n — 400
Tf, = Xge H n — 400
Here by construction |Ag| = ||| which we assume # 0. Since
0 < fn = Xofall® = T fall* + XS fall* = 2X0(T fi, f)

<ITI* + A5 = 2X0(T fn, £n)

=22 — 2X(T fn, fr) = 0 as n — +0o
it follows that

Nollfn = gl S ITfo = Aofall® + 1T fa = Xog? = 0 asn — co.

Thus f,, — g as n — 400, and

HTg 7 )‘09H2 = lim HTfn > )\Oan2 =0,
n—+oo
i.e., Tg= Agg. So Ag is indeed an eigenvalue of T'. O

5.4.3 Orthonormal Sequence

Definition 5.4.8. Let H be an oo-dim inner product space. A sequence {¢,}°°, of elements

in H is called an orthonormal sequence if

(¢n7 Qbm) = 5nm7 Vn,m > 0.

Let {¢n}22, be an orthonormal sequence. Given f € H, the series

o

D ewdr  with op = (f, )

k=0

is called the Fourier series of f with respect to {¢,}, and ¢;’s are called the Fourier coefficients.

o0
Proposition 5.4.9 (Bessel’s Inequality). Let > crpdy be the Fourier series of f € H. Then

k=0

o

Do lel < IIfI%
k=0

Equality holds if and only if f = > cxok.
k=0
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n
Proof: Let s, = > cp¢r be the partial sum. By construction
k=0

(f=sndx) =0, for0<k<n.
Then we have
0<(f = sn,f—sn) =(f ) = (f = sn,8n) = (sn, f = 5n) = ($n, 5n)
=(f.f) = (sn:50) = IFII” — En: Jewl?.

k=0

o0
It follows that > |cx|? < ||f||?>. Equality holds if and only if ILm If —snl> =0, ie.
k=0 n—00

f=lim s, =) cror.
k=0
O

Theorem 5.4.10. Let H be an oo-dim inner product space, and T : H — H be a compact

self-adjoint operator. Then there exists countably many real eigenvalues Ao, A1, -+ of T, with
Aol > |A1] = |Ae| > - - and A, — 0 as n — 400.
The corresponding eigenvectors {¢,}o°,, where

Tgbn ~ >\n¢na ||¢n“ =1

form an orthonormal sequence.

Each element in the image of T is represented by its Fourier series
o0
Tf=> (Tf.dx)pr,  Vf€H,
k=0

Furthermore, any nonzero eigenvalue of T equals to some \; above.

Proof: Let Ao be an eigenvalue of T' with |Ao| = ||T||, as promised by Proposition 5.4.7. Let ¢g

be a corresponding eigenvector with ||¢g|| = 1. By construction

Aol = [(T'¢o, ¢o)| = sup [(T'f, f)| = IT|.
feH
[l flI=1
Consider

Hy={f € H | (f o) =0}

H, is a closed subspace of H and
T: H1 — Hl.

Indeed, let f € Hy. Then

(Tf,d0) = (f, Tho) = Xo(f,¢0) =0
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which implies T'f € H;.
It is easy to check that T : Hy — H; is again a compact self-adjoint operator. It is clear
that the norm of 7" on H; is no larger than its norm on H. Thus by Proposition 5.4.7, there

exists an eigenvalue Ay with eigenvector ¢, such that

Aol = [Mal,  (f1,00) =0, o]l = 1.

Next we can consider

Hy ={f e H|(f do)=(f ¢1) =0}

and similarly find eigenvalue A2 and eigenvector ¢o such that

Aol = [A1] = [Azl, (¢2,91) = (¢2, ¢0) = 0, 2] = 1.
We can repeat this process and find eigenvalues Ag, A1, -, with
Aol = [A1] = -+

and orthonormal sequence of eigenvectors {¢y}.
We claim that A, — 0 as n — +00. Otherwise the sequence {ﬁ(ﬁn} would be bounded.

By compactness of T', the sequence
1
{T(-0n)} = {90}
n

would have convergence subsequence. But this is impossible, since ||¢, — ém||> = 2 for any
n #m.

Now for any f € H, let
sn=Y ckdr, k= (f,6n)
k=0
be the partial sum of the Fourier series of f. Then

(f_sn)¢k):07 k:0,17"',7’l.

Since |Ap+1] equals to the norm of T restricting to the subspace that is orthogonal to

¢, ¢n, we have
IT(f = sa)ll < Pnsallf = snll < Angall[fIl =0 asn — +oc.

Thus
(o)
Tf= lim Ts, = > eCrdr
k=0
Finally, let A # 0 be an eigenvalue of T with eigenvector ¢. Then ¢ = T(%gf)) lies in the
image of T and therefore

¢ = (¢, 6n) bk

0
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If XA # A\ for any k, then

Mo, dx) =T, o) = (¢, Tor) = (9, dr)
= ¢=0

Contradiction. It follows that A = A\ for some k£ and

$=> (6,0)0x.
A=A

5.5 Sturm-Liouville Eigenvalue Problem

5.5.1 Eigenvalue Problem
Recall Theorem 5.2.3 for the following boundary value problem
Ly=f on I = la,b]
By == ary(a) + 1y'(a) =0
Bay = agy(b) + P2y’ (b) = 0
Assume the homogeneous boundary value problem
Lu=0 on I = [a,b]
Biu=0
Bou =0

has only the trivial solution u = 0. Then there exists the Green’s function G(¢, s) such that the

above inhomogeneous boundary value problem is uniquely solved by

y(t) = /ab G(t,s)f(s)ds.
Another related problem is the Sturm-Liouville eigenvalue problem:
Ly+Ay=0 on [
By = Boy =0

which depends on a real parameter A\. This problem is interested in finding certain value of A
such that the boundary value problem has a nontrivial solution y # 0. Such A is called the
eigenvalue of the problem. If the solution space has dim = m > 0, we say the eigenvalue A has

multiplicity m. We can think about A as the eigenvalue of the operator —L
—Ly = \y.

We will always assume the homogeneous boundary value problem has only the trivial

solution. This is the same as saying that A = 0 is not an eigenvalue.
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Example 5.5.1. Consider the eigenvalue problem
y' + Xy =0 on I = [0, 7]
y(0) = y(m) =0
This boundary value problem has nontrivial solution only when
A=Xy=n* n=123-
Fach eigenvalue A, has multiplicity 1 with solution
yn(t) = sin(nt).

We observe that any function ¢ € C1(I) with ¢(0) = ¢(7) can be expanded
o0
o(t) = Z an sin(nt)
n=1
by the eigenfunctions {sin(nt)}. This is the well-known Fourier series expansion.

5.5.2 Green’s function as Compact Self-adjoint Operator

It turns out that Fourier expansion such as that in Example 5.5.1 exists for Sturm-Liouville
eigenvalue problem in general. To set things up, we will consider the inner product space C([I)

of continuous real functions on I = [a,b]. The inner product is

b
(f.g) = / FBg()dt.

We assume that the homogeneous problem

Lu=20 on I
Blu:BQ’U,:O

has only the trivial solution u = 0. Thus the Green’s function G(¢, s) exists. Then the eigenvalue

boundary value problem

(A#0)
Biy=Byy=0

is equivalent to the integral equation

b
o(t) =2 [ Glt.9(s)ds,
We define the following linear operator

T:C()—C()

b
(Th)(t) = - / G(t, 5) f(s)ds.
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Then the above eigenvalue boundary value problem is equivalent to find y € C(I) satisfying

Ty = —y.
y=y

The corresponding solutions become the eigenvectors of the operator 1.

Now the key is to realize that T is a compact self-adjoint operator. This will allow us to

apply the results in Section 5.4.
Proposition 5.5.2. T': C(I) — C(I) defines a compact self-adjoint operator on C(I).

Proof: Let us first consider self-adjointness. Let f,g € C(I). Then

b
(f.Tg) = / F)(Tg)(t)dt

-/ i / a6 ()
(Tf,9) _/dt/ dsf(s )g(t)

Since G(t,s) = G(s,t) is symmetric, we have

Similarly,

(Tf,9) = (f.T9g)

So T is self-adjoint.
Next we consider the compactness. Let { f,,} be a bounded sequence in C'(I) with || f,,|| < M.

Let
gn(t) = (T fr)(t /Gtsfn
Since G(t, s) is continuous hence bounded on I x I, there exists A > 0 such that
|G(t,s)] < A, t,sel.
Thus

b
lgn (1)) <A / [ Fuls)|ds

oo ([ o)
<AM(b— )

So the sequence {g,} in C(I) is uniformly bounded.
Again by the continuity of G(t, s), for any ¢ > 0, there exists § > 0 such that

|G(t1,s) — G(ta,s)| < e, for [t;1 —ta| <9, (ti,s) eI x 1.
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Therefore for |t; — t2| < J, we have
’gn tl gn(tQ)‘

/rG b, 5) — Glta, 8)||fo(s)|ds

<e / Fals)lds
)

<e(b— a)§M.

So the sequence {g,} in C(I) is also uniformly equicontinuous.
Thus the sequence {g,} in C(I) is uniformly bounded and uniformly equicontinuous. By
Arzela-Ascoli Theorem, there exists a subsequence that converges uniformly to a function ¢ in

C(I). This proves the compactness of T'. O]

5.5.3 Eigenfunctions and Fourier Series

Since T': C(I) — C(I) is compact self-adjoint, by Theorem 5.4.10, there exists eigenvalues
1o, 1, - -+ and eigenvectors ¢g, ¢1, -+ of T such that

lpol > |pa| > - prn =0, n— 400

and {¢,} form an orthonormal sequence. Any function in the image of T can be expressed as

a Fourier series of {¢,}. Equivalently,

1 1 1
Ao = —, A= —, An = —,
Ho M1 Hn,

are eigenvalues of the Sturm-Liouville boundary value problem whose solutions are given by

¢07¢17"'
Given any u € C%(I) with Bju = Bou = 0, we have f := Lu € C(I). We can view u as a

function solving the boundary value problem
Lu=f
Blu = Bzu =0
Thus b
u= [ Gle.s)f(s)ds =-1().

So w lies in the image of T'. It follows that u has a Fourier series expression by

o0

b
u=Yaon  a=(uo)= [ ubald

k=0

Remark 5.5.3. Using Lebesgue integral, one can actually show that
T:L*(I)— L*(I)
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defines a compact self-adjoint operator on the Hilbert space L?(I). The eigenfunctions {¢,} of
the Sturm-Liouville problem form an orthonormal basis of L?(I).

From the series expansion,

=S 6)n)

—- :20 - Lon)on(t)

_ gj o) [ onto)z s
_ / ' <_ ki;o W) (Lu)(s)ds.

Comparing with the Green’s function formula

b
u(t):/ G(t,s)(Lu)(s)ds

we find a very useful expression of Green’s function in terms of eigenvalue problem
o
Pk (t) Pk (s)
G(t,s) = — SR
(t,9) l;) Ak

Example 5.5.4. Consider the Dirichlet boundary value problem
y' +4y=t> onI=]0,1]
y(0) =y(1) =0
The eigenvalue problem is
"+ A+ Np=0  ¢(0)=0¢(1) =0.
It is easy to find the eigenvalues
A\ = n’m? — 4, n=1,2--

with normalized eigenfunctions

bn(t) = V2sin(nnt).

Thus the Green’s function of L = (%)2 + 4 for the Dirichlet boundary condition is

G,5) = = oGl _ 5 ) o)
n=1 n=1
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This allows us to solve the above Dirichlet boundary value problem by

1
:/ G(t,s)sds
0

5 2 sin(nwt) [T 2
= Zm sin(nms)s“ds

n=1
sin(nrt) (—=1)"(2 — n?x?) — 2
- Z — n2r 2 n373 :
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Chapter 6 Calculus of Variations

6.1 Euler-Lagrange Equation

6.1.1 Principle of Least Action

In classical Newtonian mechanics, the trajectory
q(t) : R - R"
of a particle of mass m moving in the space R™ obeys Newton’s 2nd Law
F = mq(t).

Here F = F(q,t) is the force. This is a second order ODE, whose solutions are completely
determined by specifying the initial condition q(tp) and q(tp) at some time t.

We will mainly consider conservative forces, in which case we can write

F(q)=-VV(q)

for some function V' : R” — R called the potential. Define the Kinetic energy

1
K= quz
and the total Energy
E=K+V.

Proposition 6.1.1. The total energy is conserved along the motion.

Proof:
dE  d, 1 d
’ _@(imq )+ @V(Q(t))
=mq-q+qVV
=F+VV)-q=0.

Definition 6.1.2. Define the Lagrangian of the motion by

L=K-V.
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For any path
q(t) : [to, 1] = R™,  q(t) = (qa(t),- -+ . qu(t))
we define its action functional by
t1
Sta) = [ " £

Principle of Least Action: Trajectories of classical particles are extremal points of the system’s

action functional on the path space.
Often though not always, the action is minimized for classical trajectories, then this is the
least action. We will show this for the above system in a minute. This turns out to be a basic

principle governing classical mechanical problems.

6.1.2 FEuler-Lagrange Equation

For simplicity, let us first consider the 1-dim case
q(t) : [to,tl] — R.

Theorem 6.1.3. Assume x(t) : [to,t1] — R is a smooth path that extremizes the action func-

tional of the form

Sly(t)] = / ' 5(g,d,t)dt

to
for all possible smooth paths q(t) : [to,t1] — R with the fized endpoints q(to) = x(to), q(t1) =
x(t1). Then x(t) satisfies the Euler-Lagrange Equation

4 (ory o
dt\0i) Oz
Proof: Let z(t) be such an extremizer. For any smooth map

vl [to,tﬂ — ]R, ’}/(to) = ’y(tl) =0,

and any small number s, the path

z(t) ¢
o #(t) = 2(t) + s7(t)



By assumption, f takes an extremal value at s =0
= f(0)=0.

On the other hand,
t1
f(s) = / L(x+ svy,&+ s, t)dt

By Chain rule

t1

/t1 0L d (0L N 4y 98
w \oz | dt\oi)" oi !

/tl 0L _d (OENN
“Jyy \oz at\oz)) "™

Here the boundary term from integration by parts vanishes since v(tyg) = v(¢1) = 0. Thus

oL d (0L
[, (- (%)) a0

Since the choice of « is arbitrary, it follows that

oL d (L)
or dt \ox)

to

Remark 6.1.4. The above calculation generalizes to the n-dim case
The corresponding extremal path satisfies the Euler-Lagrange Equation

4 (0L _ 0k i=1.2.-..n
dt \ 9¢; _8qz~’ T T

Example 6.1.5. Let us consider a particle moving in the potential V. The Lagrangian is
1 .9
L:K—Vzimq —Vi(q).

We calculate

0L . 0L ov
ag " By o
The Euler-Lagrange equation reads
.. ov
= dq;
or in vector notation
mq = —VV.

This is precisely the motion via Newton’s 2nd Law.
Example 6.1.6 (Spring with gravity). Consider a massless spring with elastic coefficient k.
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l:p

m
We have
K = tma? V= Lka? 4 mgh = Lra?
= —mi = —kz® +mgh = —kz* — mgz.
2" 2 =3 g
The Lagrangian is
1 1
L= §mm'2 — §km2 + mgz.
The Euler-Lagrange Equation
dos_oe
dt 0  Ox

reads

mx = mg — k.

Example 6.1.7 (Disk pulled by falling mass). Consider a disk of mass m; pulled across a table

by a falling object of mass mgy. Assume there is no friction.

We parametrize the position of m; via radial coordinate by

x(t) =r(t)cosO(t), y(t)=r(t)sind(t).

The kinetic energy of m; is

The kinetic energy of mo is

The gravitational potential is
V = —mag(l — 1) = mag(r —1).
Therefore the Lagrangian is

1 . 1
L= §m1(¢2 + 726%) + imgfg —mag(r —1).
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The Euler-Lagrange equation

a4 (o8 _ o

dat\or) or

a (o2 _oz

dt\ 90 ) 00
(mq 4+ mo)7 = myré? — mag
d

% (myr?0) =0

From the second equation we get

reads

J = m1r29 = constant.

The constant J is precisely the angular momentum. Plugging

: J
0= 5
mir
into the first equation, we find
JQ
(my 4+ mo)7 = =y mag.

Effectively, this can be viewed as a 1-dim problem along r, where the disk feels a force

m‘j;ig, — mag with potential (by integrating)
J2
9myr? + magr.
The stable equilibrium is at
J2
3 —mag =0
mary

which is solved by

J2 1/3
m:( ) .
mimag

stable equilibrium

Tx

At this point, the disk rotates with frequency

1/3
- :<m592> "

myr2 miJ

Otherwise we would find orbits like
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6.2 Kepler Problem

The classical Kepler problem describes the motion in R? in the potential of the form
Vir)=——, K is constant

We use r = (1, z2,x3) for the position and r = /2% + 23 + 23 for the length. The force is

Kr
F £ —VV =7 —72*
rer
which is a central conservative force with inverse square growth of r.

o If K > 0, the force is attractive. Gravitational force and attractive electrostatic force are

such examples.

o If K <0, the force is repulsive. Repulsive electrostatic force is such an example.

6.2.1 Solutions of Motion

We will next focus on the attractive force so K > 0. The equation of motion is

. Kr
mr=——-—.
r2r
In components, we have a system of ODE
. Ky
mxry = —
r3
. Ky
mxro = —
r3
. Kus
mrs = — 3
r

Our goal is to solve the above equations.

Recall the angular momentum is defined by
J=mr xr.
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We first observe that J is conserved along the motion (this in fact follows from the rotational

symmetry of the problem via Noether’s principle). Indeed

d L. ..
—J=mrxr+mrxr

dt
=r X (mf)
Eqn of Kr
O % (———) = 0.
Motion ( 72 r)

Note that
J.-r=0, J-r=0

~

!l

=30

Since the direction of J is fixed, the motion is confined to the plane containing the initial
position and velocity. This reduces the problem to a plane motion with central force.

There is another hidden conserved vector called Laplace-Runge-Lenz vector

rxJ r

A= .
K r

Let us check that A is conserved along the motion. Using the identity for vectors in R?

—.

ix(bxd) = (@ &b—(a-b)e

and the motion equation mr = —%, we have (using conservation of J)
dA 1. « (mr X 1) d (r)
— =—=TFX(mrxr)— — |-
dt K dt \r

So A is indeed conserved.
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=,

Let us now consider the inner product A -r. Using (@ x b) - @ = (¢ x @) - b, we have

1
A~r:?(fo)~r77‘

1
:E(I'XI.')’J—T
J2
=fem "

Let A -r = Arcosf, where A is the length of A and 0 is the angle between A and r.

A

Then
2

Arcosf = —— —
T COS Km T

SSE 1
- Km1+ Acosf’

Now we know the motion is on the plane and J?, A are conserved constants. Since

= r

A-J=0,
we have the following picture about the motion

J

The above equation becomes an equation in polar coordinate. It follows immediately that
e If A <1, the motion orbit is an ellipse
e If A =1, the motion orbit is a parabola

e If A > 1, the motion orbit is a hyperbola
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6.2.2 Kepler’s Laws
Kepler’s First Law

Let us take a closer look at the quantity A.

rxJ r rxJ r
A-A= _ . _
(K r) (K 7")

C(ExJ)-(FxT) (FxJ)-r
= 02 2 r +1
(ExT)x1)-d (rxr)-J
= 702 2 o +1
(F-0)J-J J-J

= -2 1

K? mKr+
_1+£ lml'-2_5
- mK?2 \ 2 r
_1+2J2E
N mK?

1

where E = gml"2 — & is the total energy. So we have the equivalent descriptions

e If £ <0, the motion orbit is an ellipse
e If £ =0, the motion orbit is a parabola
o If £ > 0, the motion orbit is a hyperbola

This is Kepler’s first law on the orbit shapes.

Kepler’s Second Law
There is another interesting property about the angular momentain conservation. The rate

of sweeping out area is
1 1
dArea = Ul rdf = 5r2d9

J

dArea 1 5. .
= —7rf=— is a constant.
dt 2 2m
A
rdf
do l

r |

This is Kepler’s second law about the constant rate of sweeping out area.
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Kepler’s Third Law

Consider the elliptic orbit case £ < 0. The equation is

: h l J? A<1
e —— ere = — .
"T 1+ Acost’ whet Km’
Let us rewrite this into plane coordinate (z,y)
T =1cosb, y =rsinf
Then
r=1— Arcosf
= V2 +y2=1-Ax
lA 2 12
= (x+ 2+ y ___

1— A2 1— A2  (1-— A2)2
Let a,b denote the semi-axes of the ellipse. From the above equation, we have
l l
a

DRSS sty ey AR

Let 7 denote the period of the motion. Using

dArea o J

dt  2m

and the total area of the ellipse is mab, we have

Tab = i
m
IR 2mmab
T

So

( T )2 B m2a?b®>  m2a®l  mad
2 J: J2 K
For Gravitational force, K = GMm where M is the mass of the center. Then

3
(5) =

So 73 is the same for all trajectories orbiting around the center. This is Kepler’s third law
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6.3 Brachistochrone Problem

6.3.1 Brachistochrone Curve

In 1696, Johann Bernoulli posed the following problem of the brachistochrone: Given two
points A and B in a verticle plane, what is the curve traced out by a point acted on only by

gravity, which starts at A and reaches B in the shortest time.

A

The problem of finding the brachistochrone curve, or curve of quickest descent, is the cornerstone
and one of the earliest problem for calculus of variations.

Let us pick an arbitrary curve v from A to B. We parametrize the curve as follows

The kinetic energy is

and the gravitational potential is

V(z) = —mgy(z).

By energy conservation and the initial condition v = 0 at x = 0, we have K +V =0

= v =1/29y

The total time of descent along ~ is

B B
e[
A A

where ds is the arclength element

ds = \/dz? + dy? = /1 + y/(2)%dz.

Therefore

/ 7/1 +y
V29y(z)
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can be viewed as a functional for y(z). The curve of quickest descent is such y(z) that extremizes

this functional. We treat T' as the action functional with Lagrangian

1 1+y/(x)?
Ly, ) = (@)”

V20 y(e)

The equation for y can be found by the Euler-Lagrangian Equation

@ ory _o
de \0y') Oy’

To solve this equaiton, consider

FEuler-Lagrangian Equation implies
d d [0L ,
=5 3 4]
d oL\ , 0L , 0L ,08
~(z () o) - (a5 +5,)
d (0L oL\
(&)%)

Thus H = (' is a constant.

Remark 6.3.1. In classical mechanics, £ — H is the Legendre transform and H is the Hamil-
tonian. The above calculation is basically the following well-known statement: Hamiltonian is

conserved in the motion if the Lagrangian does not have explicit dependence on time.

Now the integrated equation
oL

o~

W’ JIEWE
GVGr v

= y(1+(y)?) =c, ¢ is some constant.

L=C

reads

We can solve this equation via separation of variables

1
y/: <C_y>2
Y

1

2

= ( Y > dy = dz.
c—-y

Consider a change of variable by

y = csin? ¢

Then

1
bl
( i ) = tan ¢, dy = 2csin ¢ cos ¢pdo.
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The equation

1
dx = <y> ’ dy = 2¢sin® ¢pdo

is solved by (using the initial condition y(0) = 0)

o]
€T :/ 2¢sin? udu
0

@
:c/ (1 — cos2u)du
0
1.
=c(¢p — 5 sin 20).
Thus we have found the solution parametrized by
c .
#(0) =5(26 — sin20)
c
Y(8) =5 (1~ cos29)

We can reparametrize using 6 = 2¢, a = § and get

8
—

<>
~—

I

a(f — sin )
y(0) =a(1 — cos )

These are the standard parametric equations of the cycloid generated by the rolling of a circle

of radius a along the z-axis.

a—acosf |- 0

Now if turn this cycloid upside-down (since the y-coordinate is directed downward as we

start with), then it gives the figure for the curve of quickest descent

A

straight line

cycloid
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6.3.2 Fermat’s Principle

Fermat’s Principle: light travels along the path that takes the least time. Johann Bernoulli

found a beautiful interpretation of the brachistochrone curve via Fermat’s principle as follows.
Consider a beam of light traveling in a medium with refraction index n. In general, n may

vary along the medium, and the speed of light is = where c is the speed of light in the vacuum.

Example 6.3.2. Consider a light traveling from medium 1 with constant refraction index n

to medium 2 with constant refraction index ns. Then the path obey’s the Snell’s law

A
medium 1
medium 2
n1 sin 61 = ng sin 6
or equivalently
sinf;  sinfs c
% 5 Vg = —.
U1 V2 ng

Let us see how this follows from the principle of least time. The travel time is

T_ nily N nala
C C

where [; is the travel distance in medium 1.

A

Iy

=

B

Let h be the distance of A to the interface, and x be the coordinate on the interface as in
the figure. Then Iy = Vh? + 2. We have
dl
L T —sing,.

dx Vh? + 22
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Similarly consider Iy as a function of x and find % = —sin . Minimizing the time 7" asks for
d dly dls
ST =y —2 &2
R T

from which we conclude

n1 sin 61 = ny sin 6y.

In general, when the light travels in the medium whose refraction index varies vertically

(but constant horizontally), then the Snell’s law shows that along the trajectory of light

sin 6

= constant
v

0

Johann Bernoulli noticed that we can think about the brachristochrone curve as a trajectory
of a beam of light in a medium where the speed of light increases vertically by gravity (v = 1/2gy
only depends on y). Then Snell’s law leads to

0 dz
s = 45 — constant
v v
Plugging
v=Vay, =V
- gy7 dl‘ - y I
we find

y(1+ (y')?) = constant

This precisely leads to the cycloid as we find above.

6.4 Isoperimetric Problem

The isoperimetric problem is to determine the closed plane curve of given length that
encloses the largest area. This problem was proposed by the ancient Greeks and the answer is
the obvious one — a circle. The problem has been extended in many different situations.

We consider curves on the plane parametrized by differentiable functions

V() = (=(t),y(1), 0<t<1

= [ ()’
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Assume (0) = (1), so v is a closed curve. Let D be the region enclosed by 7.

Then the area of D is .
A:/daz/\dy:/d(:rrdy—ydx)
D 2Jp

./
=— [ xdy — ydx
2/y

1 [/ dy dx
== Yy .
2/0 <$dt ydt)

Thus the isoperimetric problem in the case amounts to maximize A = % fol (m% — y%) dt

2
subject to the condition that L = fol (%)2 + (%) dt is fixed. So this is an example of

finding extremals of a functional subject to a constraint.

6.4.1 Action Principle with Constraint

One commonly used strategy to find extremals subject to constraints is the method of

Lagrange multipliers. We briefly review this. Suppose we want to find extremals of a function

f(z,y)

subject to the constraint
9(z,y) =0.

The constraint leads to a relation between x and y, say suppose x is an independent variable

and y is expressed as a function of . Then the extremal of f subject to the constraint is at

On the other hand, the constraint g gives

9, dydg _

Or dxdy =0

dy g

dr— dyg°
Thus the extremals of f subject to constraint g = 0 are described by the locus

Of Owgdf _

Ox  Oyg Oy N
g9(z,y) = 0.
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The method of Lagrange multiplier provides an elegant way to organize the above compu-

tations. We introduce a new variable A and form the function

F(xaya /\) = f(x7y> + Ag($7y)

Then we consider extremals of F' as a function of (x,y, A\) without any constraint. They are

oF of dg
9r " ar Tar 0
or _of 99 _
dy _0y+/\0y_0
OF
\a—g(%y)—o

If we eliminate A from the first two equations, they are reduced to

of _O90f _
Ox  Oyg Oy N
g(z,y) =0

which are precisely the equations we found above. One advantage of using F' is that it treats
(z,y) symmetrically and does not depend on which one is an independent variable. The pa-
rameter A is called the Lagrange multiplier.
Now we consider the problem of finding extremals of the action functional
t1
Slatt) = [ £ta.d.

subject to the condition
t1
Gla(t)] = [ R(q,q,t)dt =0

to
in the space of paths ¢(t) : [to, t1] — R with endpoints ¢(to) = qo and ¢(t1) = q1 fixed.
Let z(t) be such an extremal path. We can explore the extremal condition by comparing
x(t) with an arbitrary nearby path satisfying the constraint. To deal with finding nearby path
subject to the constraint, let v1(¢) and 2(t) are two arbitrary paths with endpoints

’yi(t()) :'Yi(tl) :O, 1= 1,2
Consider nearby paths with two parameters si, so
Z(t) = x(t) + s17n(t) + s272(t)

The two parameters s, s9 are not independent, but subject to the condition

Gla)] = / " R, 1)t = 0.

to
This ensures that z(¢) satisfies the constraint.

Now consider the following two functions of si, so

f(s1,82) = S[x(1)]
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g(s1,82) = G[x(t)]

By assumption, (s1,s2) = (0,0) is an extremal point of f subject to the constraint g = 0. We

introduce the Lagrangian multiplier A and define
F(s1,82,A) = f(s1,82) + Ag(s1, s2).

Then the following equations hold

OF o — 0 052 (0.0
8781(0,0, A) = D51 (0,0) + )\881 (0,0)=0
OF 0 01— 2 001409 (00)
D% (0,0,)) = Dy (0,0) + )\882 (0,0)=0
OF

Define the new action functional with Lagrange multiplier
t1
Sila(t)] = [ 2ala.d )
to
where

L) =L+ AR.

Then the above equations lead to

"L,  d {00y
LT pde =0, i=1,2
/to [8;17 dt(@i)]”dt h= P

t1
/ R(z,d,t)dt =0

to
Since 71,72 are arbitrary, we conclude that the extremal path z(t) of S subject to the

constraint G = 0 satisfies the following Euler-Lagrange Equations with Lagrange multiplier

4 (982 _ 06,
dt \ o0& )  0Ox
t1
Glz(t)] = R(z,&,t)dt =0

to

where £, = L + AR.

The case with more variables {z;} is similar, and we will have an equation for each inde-
A (0L 08 iy
dt 8931 8552
t1
Glas(t)) = [ Rlas i)t =0

to

pendent variable x;

6.4.2 Isoperimetric Problem

Now we turn back to the original isoperimetric problem. We want to maximize
1 1
Al(®) 9] = 5 | (oo yi)de
0
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subject to the constraint

1
Glx(t),y(t)] :== /0 Vaz 4 g?dt — L =0.

The Lagrangian with multiplier is

1
Ly = 5w —yd) + MVE2 + 3 - L),

962 _ 06,
or | 0Ox

0Ly _ 9Ly
oy ) Oy

a1 N1
at \ 27 Va2 + 2 —9Y

The Euler-Lagrange equation

SR

reads

d (1 Ay 1,
—|zx+ ———= | =—=2
dt \ 2 V2 + 92 2
These two equations can be integrated
AL

A
% =—(z—a)
V2 + y?
—  (r—c1)?+(y—c2)? =)o
So the maximizing curve is a circle. The Lagrangian multiplier has the interpretation of the

radius and is solved by the constraint: A = % The extremal values of A are % for maximal

and —4% for minimal, where both curves are circles but with opposite orientations.
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Chapter 7 Numerical Solutions

Finding exact solutions of differential equations is extremely difficulty and unrealistic in
general. In practice, we would like to find approximate solutions with explicit algorithm that can
be implemented in computer programs and can approximate the real solutions to a controlled
accuracy. This will be extremely useful for applications in real life problems. In this chapter,

we explain some basic ideas about numerical methods of solving ordinary differential equations.

7.1 FEuler’s Method

7.1.1 Difference Equation

Consider the initial value problem

{ y'(t) = F(y,t) ont€ [t, T
y(to) = vo

As we discussed in Chapter 3, with appropriate assumptions on £, this initial value problem has
a unique solution on [tg, T, but the explicit form of the solution is difficult to find in general.

The simplest numerical method for solving the initial value problem is Euler’s method.
Though Fuler’s method is not an effective algorithm, it illustrates many aspects of key ideas
for numerical solutions in general.

To start with, we first subdivide the interval [tg,T] by the mesh-points

ti = to + te, 1=0,---,N

. . _ T—t
with step-size € = “52.

e
~ =

I ] ] ]
¥ T T

to ti ot tipn o tn=T

A numerical solution is to assign a value y; for each mesh-point ¢; such that y; approximates
the value y(¢;) of the true solution at ¢t = ¢;.

Euler’s method is to approximate the differential equation

Y (t)=F(y.t)
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by the difference equation
Yi+l — Yi

- = F(yivti)

i.e.
Yir1 = Yi +F (yi, ti).
Starting with yg as given, this formula gives y1,y2, -+ ,yn iteratively. Since

oyt ) — ()

e—0 IS

=y'(t)
we would expect that the difference equation will approximate the true function as € — 0.

Y

!
!
|
|
|
|
|
|
|
|
!
!
|
|
|
|
|
|
|
|
|
!
!
|
|
|
1

to t1--- ti-- tn=1T

Throughout this chapter, we will use y(t;) for the value of true solution y(t) at ¢; and use

y; for the approximate value at ¢; obtained from numerical methods.

7.1.2 Error Analysis

The notion of local truncation error (LTE) 7; describes the difference between the value
of true solution at step t; and the approximate value obtained via one-step iteration from the
previous steps using true values. It is “local” in the sense that it uses the true values of solution
and does not include errors created in precious steps.

The local truncation error (LTE) 7; of Euler’s method at time ¢; is the quantity

7= y(ti) — (y(ti-1) +eF(y(ti-1),ti-1))

It uses the true solution y(¢) at the mesh-point to describe the error incurred by one-step
application of Euler’s method.
The notion of global truncation error e; describes the difference between the value y(t;) of

true solution and the approximate value y; from a numerical method

125



We say the numerical method is convergent if

lim max |e;| = 0.
e—=+00<i<N

In numerical method, it is important to establish an estimate of the global truncation error

from the local truncation error. In Euler’s method, we have

Lemma 7.1.1. Suppose F(y,t) is Lipschitz in y with Lipschitz constant L. Then

ln<ll?§i ‘Tk| elti=to) _ 1
|6i| < == .

15 L

In particular, we have

max |e;| <

0<i<N €

lglfgv |7i el(T—to) _ 1
7 .

Proof: Recall
y(ts) =y(ti—1) +eF(y(ti-1), tic1) + 7

Vi =yi—1 +eF(yi_1,ti—1)

Subtracting these two equations, we find
e; = ei—1+e(F(y(ti-1),ti-1) — F(yi-1,ti-1)) + 7.
Using the Lipschitz condition for F’
lei] <lei—1| +elF(y(ti-1),ti—1) — F(yi—1,ti-1)| + |7
<(1+el)|ej—1] + |7l
Using the initial condition eg = 0 (we choose the true value at t = t( from given)

lei)| <(1+¢€L) (14 eL)|ej—2| + |Tiz1]) + |7i]
<...

)
< (1+€L)i7k‘7'k|
k=1

(14+eL)' -1
< s~ 7
< poas |7l ( I

- | | eEiL -1
max |7 e—
T 1<k<i k el

eL(ti_tO)_l
= max |ml | ——7— |-

Remark 7.1.2. If we have an error ey at the initial £ = tg, then a similar argument leads to

max |7, L
1§k§z‘| d (eL(tl to) — 1)

lei] < eL(ti_t0)|60| + 7
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Theorem 7.1.3 (Convergence of Euler’s Method). Suppose the true solution y(t) satisfies

max |y (t)| < M
e [y (1) <

and F(y,t) is Lipschitz in y with Lipschitz constant L. Then

M
le;| < —e(eL(tFto) -1) for 0<i<N
2L
In particular, we have
Me, |
| < 2 (o L(T=t0) _ q
o, lel < (e )

which goes to zero as € — 0.

Proof: Using the Taylor series expansion

2
y(ti) = y(ti-1) +ey'(tio1) + %y”(é)

for some & € [ti—_1,t;], we have the following estimate of local truncation error

il =ly(ti) — (y(ti—1) + eF(y(ti-1),ti-1))|
=ly(ti) — y(ti—1) — ey’ (ti1)]

2 2
e, €
— — < —— .
1@l < SM
The theorem now follows from Lemma 7.1.1. O

7.1.3 Backward Euler’s Method

We can modify Euler’s method in several different ways. One modification is the backward

Euler’s method which has iteration

Yit1 = Yi + eF(Yit1,tiv1)-

Here the function F' is evaluated at (y;t1,t;+1) rather than (y;,t;) as in the previous Euler’s
method (also called forward Euler’s method).

In constract to the forward Euler’s method, the above iteration gives an implicit relation
between y; and y;41. This is the simplest example of an implicit method. To solve y;+1, we
can iterate Newton’s method until convergence. This seems more complicated than the forward
Fuler’s method. The reason we want to use the backward method lies in the fact that it has
better stability properties. Similar to Theorem 7.1.3, the backward Euler’s method has the

same convergence property as the forward one.

7.1.4 Trapezoidal Method

The trapezoidal method is a mixing of forward and backward Euler’s method with iteration

&
Yirl = Yi + §(F(y,~,ti) + F(yit1,tit1))
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which is also an implicit method. The advantage of trapezoidal method is that it converges to
the true solution faster than both the forward and backward Euler’s method.
To see this, we compare the iteration with the true solution

g
Yi =Yi—1+ i(F(yi—lvti—l) + F(y;,t;))

€

y(ts) =y(ti-1) + 5 (F(y(ti-1), ti1) + Fy(t), t)) + 7i

where such defined 7; is the local truncation error for the trapezoidal method. Let
ei = y(ti) — v

be the global truncation error. Subtracting the above two equations and assume Lipschitz

constant L for F' in the variable y, we get
€
les] < lei—1| + §L(|€i—1| + lei]) + |7

|7
1-:L

L
2
= lei| < = %Llei—l\ +

From this we can get a similar estimate from local error to global error as in Lemma 7.1.1.

Now let us focus on the local truncation error
€
7 =y(ti) — y(ti-1) — §(F(y(fz>1), tic1) + F(y(ti), ti))
€
=y(t;) —y(tic1) — i(y/(tifl) + 9 ().

Recall the following Trapezoidal rule

b
[ #eit = 5= a)r(@ + 1) = b=

for £ € [a,b]. Applying this to f(t) = ¢/(¢), we find
1
T = —5533/"(5) for some £ € [t;_1,;].

Thus if y"”(t) is bounded on [0, T], the local truncation error 7; has order &3, which is better

than that €2 for Euler’s method.

7.2 Higher-Order Methods

Euler’s method uses the linear Taylor approximation. It is natural to consider higher-order

Taylor expansions to achieve approximations of higher accuracy.

7.2.1 Taylor Method

Consider the solution of

Y (t) =F(y,1).
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The equation allows us to obtain an expression for higher derivatives y(™ (t) in terms of F' by

taking further derivatives. For example

d Usin, d Usin,
@) & (1) sing F —f F 2 pog F
y'(t) el (t) r (y,t) =y'(t)0y F + O Fon Oy F + 04

In general, a similar argument leads to the pattern
o o\"!
Bty = (F=+ = F
0= (r+ )

which are expressed by F' and its derivatives. For example,

o 0
@ (p2 92
y®(t) (F 50t 6t> (FO,F + O,F)

=F?02F + F(0,F)* + 2F0,0,F + 0, F9,F + O} F.
Let us denote the expression
k—1
Py[F] = <F§y + ;) F
Then we can obtain a numerical iteration method by Taylor approximation up to order n
R n
Vi1 = Vit %Pk[F(yi, ti)].
k=1

For the case n = 1, this is Euler’s method. For n > 1, this is generally called Taylor’s method.

Example 7.2.1 (Taylor’s method for n = 2). The iteration is

2
g
Yirr = Yi + eF(yiti) + S [F(yi, t1) 0y F (i, ti) + OcF (yi, ti)]-

7.2.2 Runge-Kutta Method

The Taylor method is conceptually easier to work with but time-consuming to calculate the
higher-order derivatives. The more effecitve Runge-Kutta method allows to retain the accuracy
of higher order Taylor approximation by evaluating F' at more intermediate points.

To illustrate the basic idea, let us add one intermediate point at

and consider the iteration of the form
Yir1 = Yi + e(wik1 + waka)

where
k1 =F(yi, t;)
€
ke =F(yi +eBr1,t; + 5)
and w1, we, 8 are constants to be found.
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Let us consider the local truncation error defined by

Tiv1 = Y(tiv1) — y(ti) — (w1 F(y(t:), ti) + wo F(y(t;) + eBF(y(t;), 1), t; + %))

The term y(t;+1) — y(t;) can be expanded by Taylor series

82

y(tinn) = y(t) =ey/(t:) + Sy (1) + O(?)

2
I3
=l (y(t:), ti) + 5[F6yF + O Flyt)h; + O(E°)

On the other hand,

5)

g
=1 F + wa(F + eBFOF + S0F) |y .0, + O(e%).

wiF (y(t:), ti) + weF'(y(t:) +eBF (y(ti), ti), ti +

Combining the above two computations, we find

52

Ti+l = 6[1 — Wi — wQ]F(y(ti), ti) + 5[(1 — QOJQB)FayF + (1 — WQ)atF”y(ti)’ti + 0(63).

Therefore we can achieve accuracy for 7311 = O(¢3) by choosing

1—wl—w220
1—2wy8=0
1—&)2:0

1
= wy =0, wy =1, ﬂzi.

Thus we have arrived at the following two-stage Runge-Kutta iteration method

=

&
Yir1 = Yi +F(yi + §F(yiati)7ti + 5

which is also called modified Euler’s method.
Now the general idea is similar, we can add more intermediate points to achieve higher

order accuracy. The famous four-stage Runge-Kutta method is the iteration

13
Yit1 = Yi + — (k1 + 22 + 2K3 + Ka)

6
where
k1 =F(yi, t;)
£ £
Ko =F(yi + Sfn b+ 5)
e £
k3 =F(y; + 5/42,15@' + 5)
| k4 =F(y; + ek, ti +¢€)

The local truncation error will have order 7; = O(g?).
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7.2.3 Linear Multi-Step Method

Taylor methods and Runge-Kutta methods are known as one-step methods, since the iter-
ation for computing ;1 is determined solely from y;. In general, we can consider multi-step
methods to improve the approximation in which y; 1 is determined from previous several steps.

A general linear multi-step method has the form of iteration

Yi+1 =1Yi + aoyi—1 + -+ + QpYi—pt1
+elBoF (Yiv1, tiv1) + BiF(yi, ti) + - + BpF (Yimp+1, ti—pt1)], i>p—1
where we assume |a,| + |Bp| # 0. This is considered as the p-step method since p-previous

solution values are being used to compute the next one.

Example 7.2.2. The p-step Adams-Bashforth method is the iteration of the form

Yirr = Yi +(BrF (yirts) + -+ BpF(Yi—pr1, ti—pr1))

where the constants {31, -+, 3,} are chosen to give the highest order accuracy.

Let us consider the local truncation error defined by

Tit1 =Y(tiv1) — y(ts) —e(BrF (y(ts), i) + - -+ + BpF (y(timp+1), ti—pt1))
=y(tiv1) — y(ti) — e(Bry'(t) + - - + Bpy/ (ti—pt1))
Then we can Taylor expand all terms at the point ¢;41 and choose 3’s to achieve the highest
order approximation. Let us consider the 3-step example for p = 3
Tip1 =Y(tip1) — y(ti) — e(Bry'(ti) + Boy/ (ti-1) + B3y’ (ti-2))

2 3

=y(tiv1) — [y(tiv1) —ey'(tiv1) + %y”(tiJrl) ~ %y"'(tm) +0(eY)

2
— b1y (tiv1) — ey (tiy1) + %y"'(tm) +0(e%)]

— eB2ly (tiv1) — 2ey" (tix1) + 28%y" (tiy1) + O(€°))]
9¢2
—eBaly (tiv1) — 3ey” (ti1) + 71/”(75i+1) + 0(e%)]

=ciey (tit1) + 2y (tig1) + c3e®y" (tig1) + O(e?)

where

c1=1—-p1—P2—pB3
1
62=—§+51+252+353
1 1 9
c3 _6_561_2ﬁ2_553

To achieve the best accuracy, it is preferred to choose (1, 82, 83 such that ¢; = ¢o = ¢3 = 0.

23 4 5

:E 52:_* BSZE

= B1 3

Thus the 3-step Adam-Bashforth method is explicitly given by the iteration

23 4 5
Yir1 = Yi + € EF(yiati) - gF(yi—hti—l) + EF(yi—Qati—Q) .
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Example 7.2.3. The p-step Adams-Moulton method is the iteration of the form

Yitr1 = Yi + €[BoF (Yiv1, tiv1) + Br1F (yi, ti) + - + BpF (Yipt1, timpt1)]

where the constants {fo, 51, ,Bp} are chosen to given the highest order accuracy. Note that
Bo # 0 in this case, thus Adams-Moulton is an implicit method in contrast to the explicit

Adams-Bashforth. Let us again consider the 3-step case. The local truncation error is
Tivr =y(tiv1) — y(t:) — elBoy’ (tiv1) + By (t:) + By (tio1) + B3y’ (ti—2)]
=c1ey/ (tig1) + 22y (i) + 32’y (tigr) + cac™y"" (1) + O(€°)

where

c1=1—Po—p1— P2 — B3
022—%4-51-1-252-%353

1 1 9
= — — - 2 -
=g 251 B2 253

1 1 4 9
04—*ﬂ+851+§52+§53
Asking ¢; = co = ¢35 = ¢4 = 0 solves
3 19 5 1
50—§ Bl—ﬂ 52——ﬂ 53—ﬂ

7.3 Stability and Convergence
We focus on the linear p-step method

Yi+1 =1Y; + Q2yi—1 + - + QpYi—pt1

+e[BoF (Yit1, tiv1) + BiE (Yis ti) + -+ + BpF (Yi—pt+1, timpt1)], t>p—1.

To apply this iteration, we need p starting values

Yo, Y1, Yp—1

The yo is given by the initial data. The others yi,--- ,y,—1 have to be computed first, say by
using a Runge-Kutta method. It is thus important to understand the approximation error of

the numerical solutions arising from errors in the starting values and errors from the iterations.

7.3.1 Zero-Stability

Definition 7.3.1. A linear p-step method is said to be zero-stable if there exists a constant
K such that for any two sequences {y;} and {g;} generated by the iteration from the starting

values {yo,- - ,yp—1} and {go, - ,Yp—1} respectively, we have

lyi — 3il < K sup |y; — Ul
0<5<

for all t; < T and as ¢ — 0.
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Thus “zero-stability” can be understood intuitively as saying “small perturbation at starting
data gives rise to small perturbation at output”. It turns out that to check the zero-stability of

the method, we only need to check it for the trivial differential equation
y' =0

This explains the name “zero-stability”.

Let us apply the above p-step method to the trivial equation 3’ = 0. The iteration becomes
Yirl = 0nYi + QaYi—1 + -+ + pYi—pr1 (%)

Let us analyze the stability of this iteration.

We consider its characteristic polynomial defined by
p(z) = 2P —a1 2Pt — P — o —

Note that if A is a root of p, then p(A) = 0 implies that the sequence

yi = A solves (x)
This observation allows us to find the general solution of (x) as follows
Case 1: Assume p(z) = 0 has p distinct roots
AL A2, A
Then (%) can be solved by
yi:cl)\i+02)\§+---+cp>\; 1> 0.

Here c;’s are constants. These constants can be determined from the starting values

Yo, Y1, ,Yp—1. In fact, the starting values give the relation
1 1 s 1 C1 Yo
A1 Ao N | | w»n
-1 -1 -1
Ay A A Cp Yp—-1
=A

The determinant of the marix A is known as the Vandermonde determinant

det A =[x — ) #0

1<j

Thus A is invertible and we can solve ¢’s by

C1 Yo
(&) _ Ail Y1
Cp Yp—1
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Case 2: Assume p(z) = 0 has repeated roots
p(z) = (z = A)™ - (2 = )™

where my, is the multiplicity of the root \j.

Consider the root A; with multiplicity m; > 1. Then for any k < m1, i >p

(ddz>k (p(2)2'7P)|z=n, = 0.

This implies that the following sequence

d\* .
Z:Ak - 7
Y 1<dz> z

solves the equation (*). Thus (%) can be solved in general by

=i(i—1)-- (i —k+1)X\
2=

yi =(c11 + c2i 4 -+ ey ™A
+ (ca1 + Cogi 4 -+ - 4 comyi™2 1) AG
>
+ (ci1 4 cigi + -+ iy ™YL

Here c,4’s are constants, which again can be determined from the starting values yo, y1,- -+ , yp—1.

Theorem 7.3.2 (Root Condition). A linear k-step method is zero-stable if and only if p(z) =

(z—=A)™ - (2 — N)™ satisfies the following conditions
o M| <1 fork=1,---,1
o If|\i| =1, then A is a simple root, i.e. my = 1.

Proof: As we mentioned above (without proof), it is enough to check the stability for the trivial
equation 3y’ = 0 where the iteration is (x). Let us assume this fact.

The general solution of (x) takes the form
yi = (A + e2()Ay + -+ ali)A]

where ¢ (7) is a polynomial in ¢ of degree < my. The zero-stability in this case is equivalent to
saying that for any choice of ¢1(i),--- ,¢/(¢) (which is linearly equivalent to choice of starting
values of yo,---,yp—1), the sequence {y;} should be bounded. Thus all A;’s should satisfy
|[Ak| < 1. And for |A\gx| = 1, the polynomial c(i) can not depend on i, i.e. my = 1. O

Remark 7.3.3. Another way to see this is to express the iteration as a matrix relation

Y1 = BY,, t>p—1
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where Y; is the column vector

Yi
Yi—1
Y; = Z, , i>p—1
Yi—p+1
and B is the matrix

al a2 o« o e o« o e ap

1 0
1 0

1 0
The initial vector Y,_; collects the starting values. Then the stability asks whether the
sequence of vectors
B"Y,
will be bounded as k — +oc0. The characteristic polynomial of B is precisely

det(z — B) =p(z) = (2 — A1)™ -+ (2 — \)™.

For any eigenvalue A of B, there exists only one eigenvector. In fact, the eigenvalue equation

Bu = \u u’ = (ug,- -, up)
reads
aiuy + aoug + - -+ apuy =Aug
(5 :)\'UQ
Up—1 =AUy

This clearly has only one solution up to a rescaling constant. Therefore each eigenvalue of B

has only one Jordan block and there exists an invertible matrix P such that

A1

P~ 'BP =

It is clear that lim B¥ is bounded if and only if the root condition in Theorem 7.3.2 holds.

k—+o0
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7.3.2 Convergence

The local truncation error of the linear p-step method is
Tit1 =y(tir1) — (ay(ti) + aoy(tior) + -+ + opy(ti—ps1))
—e(BoF (y(tiv1), tivr) + BrF(y(te), ti) + - + BpF (y(timpt1), timp+1))
=y(ti+1) — (aay(t:) + aoy(ti=1) + -+ + oy (ti—pt1))

—e(Boy' (tiv1) + Bry' (ta) + - + Bpy/ (tipr1))-
Definition 7.3.4. The linear p-step method is called consistent if

lim T 0 for all <.
e—0 €

We can Taylor expand the above local truncation error 7,41 at the point ¢;11 and find
Tir1 = y(tiv1) (1= (1 + oo+ +ap)) +ey (tig1) (o1 + 202+ - - +pap— Bo— Br— - - — Bp) + O(€7)
Thus the method is consistent if and only if

artag+--tap=1
a1 +200 4 +py=Po+ Pt + 5
The global error is defined to be the difference
ei =y(ti) — yi
between the value of the true solution and the approximate solution at #;. The method is called

convergent if

lim max |e;| =0
e—00<i<N

for any starting values yo, y1,--- ,yp—1 such that
hmyk:yo k;:O?laap_l
e—0
We state without proof the following remarkable result on the convergence property.

Theorem 7.3.5 (Dahlquist’s Equivalence Theorem). A linear multi-step method is convergent

if and only if it is zero-stable and consistent.

Example 7.3.6. Consider the 3-step Adams-Bashforth method

23 4 )
Yiy1 =Yi T € EF(yiati) - gF(yi—Lti—l) + EF(yi—Q,ti—Z) :
The characteristic polynomial is

plz) =23 =22 =22(2—1)

which has double root z = 0 and single root z = 1. So the method is zero-stable. In this case

a1:1 a2:0 043:()
23 4 5
ﬁl—ﬁ 52—*5 53—5

The consistency condition
ar = B1+ B2+ B3

is satisfies. Therefore this method is convergent by Dahlquist’s Theorem.
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7.4 Boundary Value Problem

We illustrate some basic ideas and features of numerical method for solving boundary value

problems through the following example of Dirichlet boundary value problem
{ y'(t) = £(t) onI=[0,1]
y0)=a  y(1)=p

This problem is itself simple since we can solve it explicitly by integrating f(¢) twice. Never-
theless we will look for a numerical solution.

We again subdivide the interval [0, 1] by the mesh-points
t; =tg + 1€

with step-size € = %

F T T T

to t1 0t tiqr T tn=1
We look for a function valued on the mesh-points

Yo, Y1, " YN

Such that y; will approximate the value y(t;) of the true solution at ¢;. The situation is different

from the initial value problem we discussed before: the endpoint values are fixed

Yo = yn =3

and we need to interpolate the interior points from the equation.

7.4.1 Difference Equation

The first idea is that we can approximate the differential equation by a difference equation.

Consider the following 2nd order centered approximation of a function w(t)

1
D?u(t) == ?(u(t +e) —2u(t) + u(t —¢)).
We can use Taylor expansion at ¢
2
u(t+¢) =u(t) +eu(t) + Eu”(t) + -
to find )
D2u(t) = (1) + %u@) (t) + O(eY).
Thus D?u(t) can be used to approximate the function «”(t). Apply this to our problem, the

differential equation becomes a set of algebraic equations

1 .
?(yi+1_2yi+yi—1):fi 1=1,2,--- ,N—1
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where f; := f(t;). Explicitly, this is (using the boundary condition yy = a, yn = )
(1 o

(o — ) = f — —

e2 (y2 yl) fl 22

1

5(ys — 2y2 + 1) = fo

™

1
;2(ny1 —2yn—2 +yn—3) = fn—2

p
;2(*2ny1 +yn—2)=fn-1— 2
If we denote
h—2
W
y f2
2
y = . y f =
In-2
YN-1
fvo1—5
then the above equations can be written as
Ay =1
where A is the (N — 1) x (N — 1) tridiagonal matrix
-2 1 0
72 7l
1
1
0 Jowsoners D

This will allow us to solve the approximate values from the difference equation by
y=A"'f
7.4.2 Error Analysis
Let us consider the local truncation error expressed via the values of true solution by
1 .
T = ?(y(tﬂrl) = 2y(t;) +y(ti-1)) — f(ti), 1<i<N-1L

The global error is the difference between the true value and the approximate value pro-

duced by the algorithm. Precisely, it is

ei = y(ti) — yi, 1<i<N-1.

Observe that by construction



where

€1 1
€9 T2
e = T =
EN-1 TN—-1

This gives a direct relation between the local and global truncation error
e=A"1r.

Using Taylor expansion, the local truncation error has the behavior
&2
127

_i @ (t;) + O
1Y c

=0(e?).

7 =y" (t:) + =y (t) — f(t:) + O

Let | - || denote the Euclidean norm. Then (using N = 1)

N-1LNE 1 \
2 4 3
I (Z ) (Zoeh)" =oeh
It follows that
| _ m b
lell < A7 || < AT lll7]l = O(e2) A7
Here ||A~!|| is the operator norm.

Proposition 7.4.1. ||[A7Y|| < C is bounded in the limite ¢ — 0. As a result, we find
3
lell = O(e=)
This implies that the method is convergent.

Proof: The difficulty lies in the fact that the size of A=! (which is N — 1 = é — 1) is also
increasing in the limit € = 0 (/N — 400).
Since A is a symmetric matrix, A~! is also symmetric. Recall that for a symmetrix matrix

M, we have

Il =  max A
:eigenvalue of M

Let Ay, -+, An_1 be eigenvalues of A. Then )\1_1, )\2_1, e ,)\J_\,l_l are eigenvalues of A~! and

-1
A7 = max [\l = min |\ .
|| (]
1<i<N—-1 1<i<N-—1
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Therefore we only need to show that the eigenvalues of A are bounded away from zero as

e —0 (N — +00). Let

So A= ELB . Let us consider the eigenvalue equation

u1 u1

UN-1 UN-1
In components, this reads
(w0 +ug = (24 p)ua

up +us = (2+ pug
where ug:=0,uy :=0

(un—2 +un = (2+ p)uy
Observe the following relation
sin((¢ — 1)) + sin((i 4+ 1)0) = 2 cos #sin 6.
We can find the solution of the above eigenvalue equation by
u; = sin 46, 1=0,---,N
24 p=2cosb

For ug = un = 0 hold, we need

sin(Ng) =0
T 27 (N-1m
g— — 2= ... M )7
- NN TN
Thus we find all eigenvectors of B by

sin &7
s 2pm
sin =£%

a 1<p<N-1
. (N-1)

sin =2

with eigenvalue ji, = 2 cos 5 — 2. Therefore the eigenvalues of A are given by

2
Ap ze—z(cos% -1)
2
ZE—Q(COSpmS—l), p=1,---,N—1.
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The eigenvalue with smallest magnitude is

A1 =—(cosme — 1)
2. 155 1 44 6
:?(_iﬂ et me +0(e”))
=— 712+ 0(e?).
This is clearly bounded away from zero in the limit ¢ — 0. This proves the proposition. 0
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