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Abstract

We study closed string mirror symmetry on compact Calabi-Yau manifolds at higher
genus. String theory predicts the existence of two sets of geometric invariants, from the
A-model and the B-model on Calabi-Yau manifolds, each indexed by a non-negative inte-
ger called genus. The A-model has been mathematically established at all genera by the
Gromov-Witten theory, but little is known in mathematics for B-model beyond genus zero.

We develop a mathematical theory of higher genus B-model from perturbative quantiza-
tion techniques of gauge theory. The relevant gauge theory is the Kodaira-Spencer gauge
theory, which is originally discovered by Bershadsky-Cecotti-Ooguri-Vafa as the closed
string field theory of B-twisted topological string on Calabi-Yau three-folds. We generalize
this to Calabi-Yau manifolds of arbitrary dimensions including also gravitational descen-
dants, which we call BCOV theory. We give the geometric description of the perturbative
quantization of BCOV theory in terms of deformation-obstruction theory. The vanishing
of the relevant obstruction classes will enable us to construct the higher genus B-model.
We carry out this construction on the elliptic curve and establish the corresponding higher
genus B-model. Furthermore, we show that the B-model invariants constructed from BCOV
theory on the elliptic curve can be identified with descendant Gromov-Witten invariants
on the mirror elliptic curve. This gives the first compact Calabi-Yau example where mirror

symmetry can be established at all genera.
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1. INTRODUCTION

Mirror symmetry originated from string theory as a duality between superconformal field
theories (SCFT). The natural geometric background involved is the Calabi-Yau manifold,
and SCFTs can be realized from twisting the so-called o-models on Calabi-Yau manifolds in
two different ways [Wit88, [Wit92]: the A-model and the B-model. The physics statement
of mirror symmetry says that the A-model on a Calabi-Yau manifold X is equivalent to the
B-model on a different Calabi-Yau manifold X , which is called the mirror.

The mathematical interests on mirror symmetry started from the work [CdIOGP91],
where a remarkable mathematical prediction was extracted from the physics statement
of mirror symmetry: the counting of rational curves on the Quintic 3-fold is equivalent
to the period integrals on the mirror Quintic 3-fold. Motivated by this example, people
have conjectured that such phenomenon holds for general mirror Calabi-Yau manifolds.
The counting of rational curves is refered to as the genus 0 A-model, which has now been
mathematically established [RT94], [LT98| as Gromov-Witten theory. The period integral
is related to the wariation of Hodge structure, and this is refered to as the genus 0 B-
model. Mirror conjecture at genus 0 has been proved by Givental [Giv9§| and Lian-Liu-Yau
[LLY97] for a large class of Calabi-Yau manifolds inside toric varieties. In the last twenty
years, mirror symmetry has lead to numerous deep connections between various branches
of mathematics and has been making a huge influence on both mathematics and physics.

The fundamental mathematical question is to understand mirror symmetry at higher
genus. In the A-model, the Gromov-Witten theory has been established for curves of
arbitrary genus, and the problem of counting higher genus curves on Calabi-Yau manifolds
has a solid mathematical foundation. However, little is known for the higher genus B-model.
One mathematical approach to the higher genus B-model given by Kevin Costello [Cos09]
is categorical, from the viewpoint of Kontsevich’s homological mirror symmetry [Kon95b].
The B-model partition function is proposed through the Calabi-Yau A-infinity category
of coherent sheaves and a classification of certain 2-dimensional topological field theories.
Unfortunately, the computation from categorical aspects is extremely difficult that only

results for zero dimensional space, i.e. a point, have been obtained.
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On the other hand, in the breakthrough work [BCOV94|] on topological string theory,
Bershadsky-Cecotti-Ooguri-Vafa proposed a closed string field theory interpretation of the
B-model, and suggested that the B-model partition function could be constructed from
a quantum field theory, which is called the Kodaira-Spencer gauge theory of gravity in
[BCOV94]. The solution space of the classical equations of motion in Kodaira-Spencer
gauge theory describes the moduli space of deformations of complex structures on the
underlying Calabi-Yau manifold, from which we can recover the well-known geometry of
the genus 0 B-model. We will call this quantum field theory as BCOV theory. Following
this philosophy, a non-trivial prediction has been made in [BCOV94], which says that the
genus one partition function in the B-model on Calabi-Yau three-fold is given by certain
holomorphic Ray-Singer torsion and it could be identified with the genus one Gromov-
Witten invariants on the mirror Calabi-Yau three-fold. This is recently confirmed by Zinger
in [Zin93].

The main purpose of this thesis is to understand BCOV theory from the mathematical
point of view. In physics, the main difficulty in understanding a quantum gauge theory
lies in the appearance of singularities and gauge anomalies arising from the path integral
quantization, and this is where the celebrated idea of renormalization comes into playing a
significant role. One mathematical approach for perturbative renormalization of quantum
field theories based on Wilson’s effective action philosophy is developed by Kevin Costello
in [Cosl1]. We will develop the general framework of constructing higher genus B-model
from BCOV theory using the techniques of perturbative renormalization theory. We carry
out the construction in details for the case of one-dimensional Calabi-Yaus, i.e., elliptic
curves, and prove that the corresponding B-model partition function is identical to the
A-model partition function constructed from Gromov-Witten theory on the mirror elliptic
curves. This is the first example of compact Calabi-Yau manifolds where mirror symmetry
is established at all genera. The thesis is based mainly on the work [CLL [Li].

We will give a brief description of the main results in this introduction. In section [I.1
we collect some basics facts on Gromov-Witten theory and the A-model. In section [1.2] we
describe the geometry of B-model and the BCOV theory. In section[l.3] we state the main

result for the higher genus mirror symmetry on the elliptic curve.
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1.1. The A-model and Gromov-Witten theory. Let X be a smooth projective al-
gebraic variety with complexified Kéahler form wx, where Rewx is a Kéahler form, and

Imwy € H?(X,R)/H%(X,Z). The Gromov-Witten theory on X concerns the moduli space

Mg,n5(X)

parametrizing Kontsevich’s stable maps [Kon95a] f from connected, genus g, nodal curve

C to X, with n distinct smooth marked points, such that
flC =B e Ha(X, Z)

This moduli space is equipped with evaluation maps

evi: Mgnp(X) — X

[fi(Cip1,o o)l = evi ([f,(Cipy, - pu)l) = f(pi)

The cotangent line to the i’ marked point is a line bundle on M, 5(X), whose first Chern
class will be denoted by 1; € H? (Mg,n,B(X )) The Gromov-Witten invariants of X are
defined by

(=)« Symg (H*(X)[l7]) — C

X
<tk1a1, e ,tk”an> = / " lflevfoq . --wﬁnev;an
g,n,B [Mg,n,ﬁ(X)]

where [M g, g(X )]mr is the virtual fundamental class [LT98, BEF97] of M, 3(X), which is

a homology class of dimension
(1.1) (3 —dim X) (29—2)+2/01(X)+2n
B
Definition 1.1. X is a Calabi- Yau variety if its anti-canonical bundle is trivial.
From now on we will focus on Calabi-Yau varieties. From (1.1}, we see that in the

Calabi-Yau case, the dimension of the virtual fundamental class doesn’t depend on 3, since

01<X) = 0.
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A

on.x:q—] With n inputs is defined

Definition 1.2. The genus g A-model partition function F

to be the multi-linear map

Fynxqt Symg (H'(X,O)[[f]) — C

F;TMX?‘] |:tk1a17 e 7tknanj| = Z qfﬁ wx <tk10617 e 7tknan>
BeH2(X,Z)

X

g,n,8

where ¢ is a formal variable.

The A-model partition function satisfies the following basic properties

(1) Degree Axiom. F?,n,X;q [tklal, e ,tk”an] is non-zero only for

n
Z (deg cvi + 2ki) = (29— 2) (3 —dim X)) + 2n
i=1
Moreover, we have the Hodge decomposition H*(X,C) = @ HP?. If we define
ptg=n
the Hodge weight of t*a € t* HPY by HW (k) = k+p—1, then the reality condition

implies the Hodge weight condition
n
> HW(o) = (g — 1) (3 — dim X)
i=1
(2) String equation. Fﬁn, X, Satisfies the string equation

n
A k k § : A k ki—1 k
Fg,nJrl,X;q [Lt tag, -t nan} = Fg,n,X;q [t tag, o YT g, et nan}
1=1

A

g, X ;g Satisfies the dilaton equation

(3) Dilaton equation. F

F;mX;q |:t7 tklalv t 7tknan:| = (29 -2+ n)Fén,X§q [tklala t atknan]

The parameter g can be viewed as the Kdhler moduli. Since the Gromov-Witten invariants

A

are invariant under complex deformations, F on.Xiq
b b b

only depends on the Kéahler moduli, but
not on the complex moduli of X. This is the special property characterizing the A-model.
A special role is played by Calabi-Yau 3-folds where the original mirror symmetry is

established. In the case of dimension 3,

dim ng”g(X)]mr =2n
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Definition 1.3. The Yukawa coupling in the A-model is defined to be the genus 0 3-point

correlation function
H*(X)®® — C
o B Ky — Fé?),X;q [047577]

If 8 =0, we know that the Gromov-Witten invariants are reduced to the classical inter-

section product
<057/67'7>0,3,5:0 = /X aNB ANy

Therefore, the A-model Yukawa coupling

* * *
_evia A evy3 A evgy

03X | ] X Z [Mo,5,6(X)]"

B#0
can be viewed as a quantum deformation of the classical intersection product. Moreover,
it gives a g-deformation of the classical ring structure of H*(X,C), which is called the

quantum cohomology ring.

1.2. The B-model and BCOV theory. The geometry of B-model concerns the moduli
space of complex structures of Calabi-Yau manifolds. Let X, be a Calabi-Yau 3-fold with
nowhere vanishing holomorphic volume form ¢ . Let Ty be the holomorphic tangent

bundle. Here 7 parametrizes the complex structures of X.

Definition 1.4. The B-model Yukawa coupling is defined to be
H (X, A" Ty )P = C
@ p2®@ps = Fl o i, pe, ps] = / (11 Apa A ps = Qx ) AQx
12y T X-r

where I is the natural contraction between tensors in A*1T'y and A*T' )*(

Generally speaking, string theory predicts that we should also have the B-model corre-
lation functions

FB

g, - Syme (I (X7, ATy )[[H]]) = C
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However, little is known for genus g > 0 and the inclusion of gravitational descendants ¢ is
even more mysterious.

Motivated by the physics idea of [BCOV94|, we will approach the B-model correlation
functions from the renormalization of BCOV theory using the techniques developed by
[Cos11]. Let Q be a fixed nowhere vanishing holomorphic volume form. The existence of

(1% is guaranteed by the Calabi-Yau condition. Let

be the space of fields of BCOV theory, where PV}* is the space of polyvector fields, see
(2.1). We define the classical BCOV action as a functional on & by

BCOV __ BCOV
000 3 5!
n>3

where
SBCOV . Sym (éaf?”) - C

M @@ ttu, — - Py ﬁ"/x (B1 b - Qg ) A Qg
0,n T

where fﬂo,n 1&{“1 ok = (klnfgkn) is the 1-class integration. Let
Qzé—tc‘):é”XT —>éaXT

be the differential, and we refer to and the corresponding section for the detailed
explanation. () induces a derivation on the space of functionals on &% , which we still
denote by Q. Let {—.—} be the Poisson bracket on local functionals defined by definition
Then SBCOV satisfies the following classical master equation (see Lemma [4.6)

(1.2) Q§BCOV % [§BOOV gBCOVY _

The physics meaning of classical master equation is that SPCOV is endowed with a gauge

SBCOV generalizes the original Kodaira-Spencer gauge action on Calabi-Yau 3-

symmetry.
folds [BCOV94| to arbitrary dimensions, and remarkably, it also includes the gravitational

descendants t.
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Let Ky be the Heat kernel of the operator e L2 and HK; be the smooth kernel of
de LA for L > 0. We define the regularized propagator P by the smooth kernel of the
operator — fe L 0*0e~"Adu, for €, L > 0. Both 0K and PF define operators on the space
of functionals

0 0

—_— A = =
oPL’ Tt T 9(0Ky)

via contraction, see Definition and Definition 4.7]
We would like to construct the quantization of the BCOV theory on X, which is given
by a family of functionals on & _ valued in C[[R]] parametrized by L > 0

F[L] =Y hF,[L]
920

which satisfies the renormalization group flow equation

PR — eh%eFH/h, Ve, L >0

the classical limit condition: F[L] has a small L asymptotic expansion in terms of local
functionals as L — 0 and

lim Fo[L] = §BCOV
L—0

the quantum master equation
(Q+hAp)eFIH/h =0, VL >0

and certain other properties such as the string equations and dilaton equations in this
context. All of these will be discussed in details in section [l

Once we have constructed the quantization F[L], we can let L — co. Since Lh_{rolo Ky, be-
comes the Harmonic projection, we see that Lh—>Holo 0Ky = 0. The quantum master equation
at L = oo says

QF[0] =0

This implies that F[oo] induces a well-defined functional on the @-cohomology of &g . We

will write

F[oo] = Z thff %
9>0



Using the isomorphism (see Lemma [4.10))
H* (6., Q) = H' (X7, AT )[[t]

and decomposing Ff % into number of inputs, we can define the genus g B-model correlation

functions by

FP ¢ Symg (H'(Xo, ATy )[[H]) — C

gm,
Therefore the problem of constructing higher genus B-model is reduced to the construc-
tion of the quantization F[L]. The general formalism of [Cosll] tells us that the quan-
tization is controlled by certain L., algebraic structure on the space of local functionals
on &% . There’s an obstruction class for constructing F [L] at each genus g > 0, and it’s
natural is conjecture that all the obstruction classes vanish for BCOV theory. For X being
one-dimensional, i.e., the elliptic curve, we will show that this is indeed the case.
To establish mirror symmetry at higher genus, we need to compare the A-model corre-
B

A with the B-model correlation function FZ _ . In general, FZ _

lation function F',, + g X, g.n, X,

doesn’t depend holomorphically on 7, and there’s so-called holomorphic anomalies discov-
ered by [BCOV94]. It’s predicted by [BCOV94] that we should be able to make sense

of the limit lim FZ _ around the large complex limit of X,. The higher genus mirror
Fooo  9n,Xr

conjecture can be stated as the identification of
A : B
ngn7X7q <—> fll)rlgo Fg,n,XT
under certain identification of cohomology classes
H* (X, N*Tx) «— H* (X, A" Ty )
and the mirror map between Kéhler moduli and complex moduli

q<—T

1.3. Main results. Let X, = E, be the elliptic curve C/(Z @ Z), where 7 lies in the

upper-half plane viewed as the complex moduli of E.
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Theorem 1.5 ([CL]). There exists a unique quantization FE- [L] of BCOV theory on E;

satisfying the dilaton equation. Morever, FE- [L] satisfies the Virasoro equations.

Section [p|is devoted to explain and prove this theorem.

Since we know that the A-model Gromov-Witten invariants on the elliptic curve also
satisfies the Virasoro equations [OP0OGD], the proof of mirror symmetry can be reduced to
the so-called stationary sectors [OP06a]. More precisely, let E the dual elliptic curve of E
and w € H?(E,Z) be the dual class of a point. The stationary sector of Gromov-Witten

invariants are defined for descendants of w

n

<tk1w,--- ,tk”w> B = / qufiev;‘(w)
954 [

Mg (E,d)]vir ;4

On the other hand, we let @ € HY(E;, T%_) be the class such that Tr(w) = 1.

Theorem 1.6 ([Li]). For any genus g > 0, n > 0, and non-negative integers ki, -+ , ky,
(1) FgET [oo][thrco, - -+ tFn@] is an almost holomorphic modular form of weight

n

Z(ki+2):2g—2+2n
i=1

It follows that the limit lim FQET [o0][tF1 @, - - -, tFn@] makes sense and is a quasi-
T—00

modular form of the same weight.

(2) The higher genus mirror symmetry holds on elliptic curves in the following sense

> ¢ <t’ﬂw,--- ,tk"w>ng = lim FE[oo][thw, -, ")

T—00
a>0
under the identification q = exp(2miT).

Section [6] is denoted to prove this theorem.



10

2. CLASSICAL GEOMETRY OF CALABI-YAU MODULI SPACE

In this section, we discuss some basics on the classical geometry of the moduli space of
Calabi-Yau manifolds, with the purpose of motivating the Kodaira-Spencer gauge theory.

We will also set up our notations that will be used throughout this thesis.

2.1. Polyvector fields. In this subsection we describe the Batalin-Vilkovisky structure of

polyvector fields on the Calabi-Yau manifolds.

2.1.1. DGA structure. Let X be a compact Calabi-Yau manifold of dimension d. Let
(2.1) PV = @ PVY  PVY = AY(X N'Tx)

0<i,5<d
denote the space of polyvector fields on X. Here Tx is the holomorphic tangent bundle
of X, and A% (X, A'Ty) is the space of smooth (0, )-forms valued in A'Tx. PVY" is a

differential bi-graded commutative algebra; the differential is the operator
d:PVH(X) - PVWTL(X).

and the algebra structure arises from wedging polyvector fields. The degree of elements
of PVé’(j is 4 + j. BExplicitly, let {2z} be local holomorphic coordinates on X. Let I =
{i1,i2, -+ ,ix} be an ordered subset of {1,2,--- ,d}, with |I| = k. We will use the following

notations
» - » 0 0 0 0
I f— ? T .. ? —_— = — ..
dz' =dz"" Ndz®? N+ Ndz**, 5.1 — 9.0 A8z732 A A&zik
and similarly for dz’ and 5Z7. Given o € PV Xj , B € PV~ X , we write in local coordinates
I-J 9 Kzl o
a= > ahde-= 8= )  pidz
H|=4,|J|=7 | K |=k,|L|=l
then
Ja = dal ndz' @ 2

(2.2) o= Z on NdzZ" ® 9.1

|=i,|J|=j
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and the product structure is given by

i _ _ 0 0
(23) aﬁEa/\B: Z (—1) la{,— gdZJ/\dZL@ﬁ/\aziK
[1|=1,|J|=j
K=k, L|=L

The graded-commutativity says that
(2.4) af = (=1)llBl gy
where |al,|3| denote the degree of a, 8 respectively.

2.1.2. Batalin- Vilkovisky structure. Calabi-Yau condition implies that there exists a nowhere

vanishing holomorphic volume form
Qx € Q9(X)

which is unique up to a multiplication by a constant. Let us fix a choice of Qx. It induces

an isomorphism between the space of polyvector fields and differential forms

ij TOX d-ig
(2.5) PVY = ALY
(2.6) a — abFQx

where I is the contraction map, which is defined in local coordinates on the basis

o (=D)HIU=D2q K if dz) = dz! Nd2K, INK =0
z

0 otherwise

The holomorphic de Rham differential 0 on differential forms defines an operator on

polyvector fields via the above isomorphism, which we still denote by 0
§:PVy - pvi!

ie.

(2.8) (0a) F Qx =9(akQx), a€PVY

Obviously, the definition of 0 doesn’t depend on the choice of Q2x.
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Given a € PV, the multiplication
an : PV}* — PV}*

defines an operator acting on polyvector fields which has the same degree as a.

Lemma 2.1. For any o, 3,7 € PVY,

[Ha’ 0]7/8]7'7] =0
viewed as an operator acting on PV}*. Here [-,-] is the graded commutator.
Proof. This follows from direct calculation in local coordinates. ([

It follows from the lemma that the operator [[0,a], 8] is equivalent to multiplying by a

polyvector fields, which defines the bracket

(2.9) {o, 8} =[[0,0], 8] € PVY’

The bracket used here differs from the Schouten-Nijenhuis bracket by a sign. More

precisely, if we let {, }s, denote the Schouten-Nijenhuis bracket, then

(2.10) {aaﬁ}sn = _(_1)|a|{a”8}

In particular, if both «, 8 € PV;O, then {«, 8} is just the ordinary Lie-bracket on vector
fields.

Lemma 2.2. The following properties hold

(1) Graded symmetry

{a, B} = (~1)*E@ B (g a}

(2) Leibniz relation

{o, BAY} = {a, B} Ay + (-1)PIN{a, v} A B



13

(8) Graded Jacobi Identity

{{a, 83,7} = (DU, {8,743} = (=) VB {a, 3}
(4) Batalin-Vilkoviski identity (Todorov-Tian’s lemma)
Ianp)=(0a)\B+ (-1)"aANIp+{a, B}
Proof. Since [a, f] = 0, it follows from the Jacobi identity that

[0, al, 8] = [0, [ev, B]] = (=1)*I[e, 9, 8] = (=1)*II[[, 5], ]

This proves (1).

{a,BA7} = [10,a],811]
= (=)o, [0,8 A 7]
= —(=1)"a, [0, 8]y + (-1)"IM[0,4]5]
= —(=1)"[a, (9, By — (=)l [0, 7))8

= {a, B} Ay + (=) a, 71 A B

This proves (2).

{{o, 8}, = (19,110, ], B]],7]
= (=D, al, 8], [0,7]
= (=D, al, [8. [0,7]]] = (=D, [[9, o], [0, 7]
= (=D, a], [8, [0,7]]] = (=D, 9, [a, [0,7]]]
= —(=1)"Ha, {8,7}} = (=1)HIPB {041}
where on the fourth line we have used the fact that [0, [0, -] = 0. This proves (3).

To prove (4), we identify d(a A ) with the action of the operator [0,a A /5] on 1 since
0(1) = 0. Therefore

Ianp) = [0,anp]-1
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= [0, 14 (=1)lanap
= [[0,q], 8] + (=)D 5 A §o + (—1) ! A 0B

= (8a) A B+ (—=D)*la A 8B + {a, B}

Remark 2.3. The Batalin-Vilkovisky identity has the natural generalization
Iar A+ Nay) :Zi(@ai)al/\-~di~--/\an—i—Zi{ai,aj}al/\-~-02i~--02j--~/\an
i i#]

where the signs are given by permuting the a’s. The proof is similar.

Definition 2.4. A Batalin-Vilkovisky algebra (BV algebra) is given by the tuple
(A, -, A {,}) where

1) A is a graded vector space.

2) -: A® A — Ais associative and graded commutative.

(1)
(2)
(3) A: A— Ais an odd differential of degree (-1).
(4)

4) {,} : A® A — A is a bilinear operation such that for all «, 5,7 € A
Ala-B) = (Aa) - B+ (-1)la- A8+ (=1){a, B}
{047/8 : 7} = {aHB} e + (_1)(|a|+1)|ﬁ|ﬁ : {a,"}/}

Corollary 2.5. The tuple (PV}*, A, 0, —{, }sn) is a BV algebra. Here {, }s, is the Schouten-
Nijenhuis bracket (see (2.10])).

2.1.3. The trace map. Define a map

Tr : PV}* —C

(atkQx)AQx if o e PVE?
(2.11) Tr(a) = Jx *

. dd
0 if o € PVy
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The pairing
PV (X) @ PV4—4d-i(X) — C
a®pf — Tr(ap)

is non-degenerate, i.e., it has no kernel.

Lemma 2.6. The operator O is skew self-adjoint for the pairing Tr(a3), and the operator

0 is self-adjoint for this pairing.

Proof. The fact that 0 is skew self adjoint follows immediately from the fact that 0 is a

derivation for the algebra structure on PV}*. For 0, First we know that

Tr ((90)B) = /X (00)B - Qx) A Qx
- j:/X(E?aI—Q)/\(BI—QX)
- j:/X(ozl—Q)/\(é?ﬁl—QX)

= j:/X(a/\GBI—Q)/\QX

= £ Tr(adp)

for some sign +. To determine this sign, we choose local holomorphic coordinates z!, - - - , 24

such that Qx = dz' A--- A dz?%, then it’s easy to see that

o d
9= Z 921 (0.1

where % is the odd derivation generated by

2

0

- T
0.7 =°

(2

Therefore the sign can be determined by

T (00)9) =~ 3T ((5552) 52 = (-1 (005)
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2.2. Deformation theory of Calabi-Yau manifolds.

2.2.1. Local deformation of complex structures. Let X be a compact Calabi-Yau manifold
of dimension d with a fixed Kihler metric. We assume that H°(X,Tx) = 0. The complex

structure of X is equivalent to the decomposition of the complexified cotangent bundles
0% 9p C =03 © 0%

into types (1,0) and (0,1) with additional integrability conditions. We consider a nearby
deformation of the complex structure, which can be viewed as deforming the above decom-
position into new types of (1,0) and (0,1) forms. This can be described as follows: let
uw e PV;;1 be a smooth polyvector field, and z!,--- , 2% are local holomorphic coordinates
on X such that locally
a9
w= Z”%dzj P
i=1

If || ]| is sufficiently small (||-|| is the norm with respect to the fixed metric), then we obtain

a new almost complex structure J, by requiring that the new (1,0)-form is spanned locally

by
(2.12) 0 =dz! +pkdst, 1<i<d

The integrability condition says that df’ is of type (2,0) + (1,1) in the new decomposition,

which is equivalent to

_ 1
(2.13) Op+ 5, n} =0

Let Defx be the local universal deformation space of X, which is a germ of the Te-
ichmiiller space of X at the given complex structure of X. Defx represents the following

deformation functor

Defx : Artin local C-algebra —  sets
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such that for a given Artin local C-algebra A with maximal ideal m 4,

- 1
Defx(A) = {u € PVY @ma| Op+ o {p. pn} = 0} / ~

The equivalence relation is given by the gauge action of PVY? ®@m4 on PVY @my

o) 4 = fa

%
a € ad o

for o € PV @mg, € PVY @my. Here ad a is the adjoint action {a,-}. This equivalence
can be viewed as generated by diffeomorphisms. From the general theory of deformation

of complex structures, the tangent space of the germ Defx is given by
Defx(Cle]/e?) = H'(X, Tx)

and H?(X, Tx) serves as an obstruction space for the deformation functor Defy.
In the case of Calabi-Yau manifolds, the deformation functor Defx is unobstructed and

Def x is the germ of a smooth manifold. To see this, let
1 € Hy' (X, Tx)

be a harmonic element with respect to the Kahler metric. p; represents a tangent vector

of Def x. We need to prove the existence of
e € PV aC][t))

such that

Ot + % {pe, ey =0, py =tpy mod t2
Then an argument of Kuranishi shows that the formal power series is convergent given t
sufficiently small. It follows that every first order deformation can be realized, i.e., Defx
is unobstructed.

We follow the approach of Todorov [Tod89] to construct p;. By Todorov-Tian’s lemma

as in Lemma the bracket {, } preserves the subspace ker  C PVy"

(2.14) {,} :kerd ® ker 0 — im 9 C ker d



If we write

Ht = Z i

i>1

then u;,7 > 2, can be solved recursive by imposing the following equation

1
(2.15) p —tpr = _ia*G{Mtaﬂt}

Here G = % is the Green operator with respect to the Kéhler metric. Explicitly,

i—1
1 - )
Hi = *5 E 0 G{,U’k‘mu’i—k}y Vi >2

k=1
We show that such constructed p indeed solves Eqn and satisfies
O pe = Oy =0
First, observe that the recursive relation and implies that
Wi €ima, Vi>2

Apply 0 to (2.15)), we find

_ 1.~ 1 15, =
Ot = _iaa*G{Nta e} = —5{/%7/%} + 58*(;8{/1’257 fie}

where we have used the fact that {y, p:} € im @ has no harmonic part. Therefore

M,y = 2{0pe, ey = —{{ps e} e} + {0*GO{ e, e} e}

Jacobi Identity implies that {{s, p+}, pe} = 0, hence
O{pe, ey = {0"GO{ e, pue} pue}
This recursive relation and the initial condition d{u1, 11} = 0 implies that
M pe, e} =0

which in turn implies

= 1
Oy = —§{ut, Mt}

18
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The deformation of the holomorphic volume form can be also described by this solution.

Let € be the holomorphic volume form on the undeformed X. Consider

(2.16) Q = e F Qg

From , we see that €2 is of type (d,0) in the new complex structure given by p;. Since
dQ)y = (56‘“ + 36’“) FQp= <8,ut + Oy + ;{Mum}) et Qy=0

where we have used the BV identity in Remark [2.3] It follows that €2 is in fact holomorphic
in the new complex structure.

If folows from the unobstructedness of Defx that we can choose a linear coordinate
{t'} of HY(X, Tx) as local coordinates of Defx. This is called the canonical coordinate,
which is unique up to linear transformations. The corresponding holomorphic family of top

holomorphic forms ([2.16]) is called the canonical family of holomorphic volume forms.

2.2.2. Ezxtended deformation space and the Formality Theorem. The smoothness theorem
for Calabi-Yau manifolds is extended in [BK98] to a bigger deformation space whose tangent

space includes all

P (X, N Tx)

i,J
We give a brief discussion here for the purpose of later discussion on the higher genus
B-model.

The deformation functor Defx is the restriction of the moduli functor associated with

the DGLA
(PVi.0.40.})

to Artin algebras of degree 0. We can consider the full DGLA

(PVY'0.{.})

and let Def¢ be the associated moduli functor. The corresponding moduli space is called

the extended deformation space of X.
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There’re two closely related DGLA’s. The first one is
(ker 9,0,{, })

where ker 0 C PV}* as before is the space of polyvector fields annihilated by 9, and
Todorov-Tian’s lemma implies that {, } is a well-defined Lie bracket on ker 0.
The second one is

(H,0,0)

where H C PV}* denotes the space of harmonic elements. We associate the trivial differ-

ential and Lie bracket. Consider the following diagram

(ker 0,0, {,})
(PVY5,0,{,}) (H,0,0)
where j is the natural embedding, and 7 is the projection to the harmonic part. j is
obviously a map of DGLA. By Hodge theory, we have the isomorphism of cohomology

groups
Hy(ker 9)=Hs(PVY') = H
Therefore j is in fact a quasi-isomorphism of DGLA’s. On the other hand, since the bracket

of two elements in ker d is in fact d-exact, the projection map 7 is also a quasi-isomorphism

of DGLA’s. Therefore we come to the Formality Theorem

Proposition 2.7 ([BK98|). The DGLA (PV}*,&{,}) 18 Loo quasi-isomorphic to the
DGLA (H,0,0)

By Proposition the moduli functor Def¢" is smooth with tangent space H. This
gives a conceptual generalization of Todorov-Tian’s smoothness theorem on Calabi-Yau

manifolds.

2.3. Special geometry and tt* Equations. In this section, we restrict X to be Calabi-
Yau 3-fold and for simiplicity we assume that h'0(X) = A%0(X) = 0. We review the

special geometry and tt* equation on the moduli space used in [BCOV94] to describe the
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holomorphic anomaly equation of higher genus topological string invariants and motivate

the appearance of Kodaira-Spencer field theory.

2.3.1. Weil-Petersson metric. Let M be the moduli stack of complex structures of X or
the Teichmiiller space if we avoid the orbifold structure, with the universal family = :
X — M. Todorov-Tian’s smoothness theorem implies that M is smooth of dimension

dim HY(X, Tx) = h*'(X). We denote by H3
H? = R37,(C)

the vector bundle on M of the middle cohomology of the fiber, with flat holomorphic
structure given by the Gauss-Manin connection. We will use V&M to denote the (1,0)
component of the Gauss-Manin connection and V&M the (0,1) component. Let FPH? be
the Hodge filtration, and

HP3™P = FPH3 JFPHIg3

is the Hodge bundle of type (p,3 — p). There’s a canonical smooth identification of vector
bundles

(2.17) HE =H o HP @ H? @ HOB
We will use £ to denote the line bundle on M
L=

which is in fact a holomorphic subbundle of H? by Griffiths transversality. £ is called the
vacuum line bundle in the physics literature. For a given point [X] € M, Lxj is the space
of holomorphic volume forms on X. The following notation will be used throughout this

section

(2.18) (o, B) _ﬁ/xomﬂ

(,) induces a natural metric on £

(V:L®L — C
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Q20 — \/—I/Q/\Q
X

The curvature form gives a Kiahler metric on M, which is called the Weil-Petersson metric.

The induced connection will be denoted by V* for the (1,0)-component and V* for the

(0,1)-component.
Explicitly, let us choose local holomorphic coordinates {t'} on M and Q; be a local

holomorphic section of £. The Kéhler potential K (¢,t) is given by

G_K(t’ﬂ = —1/ Qt A Qt
X

Then the Weil-Petersson metric is given by

(2.19) Gi; = 0:0;K
where 0; = % and 53 = %. Griffiths transversality implies that
VZ-GMQt =fih +Z5;

where f; is a local function on M, and Z; is a local section of H*!. Both sides are viewed

as sections of H?>. Therefore

Gﬁ = —8255log<ﬂt,ﬁt>
(VML TE,) (YRR, Q) (0, VTR
<Qt7§2t> <Qt,Qt>2
_ _EE)
(Qu, )

which shows that G;; is indeed positive definite.

2.3.2. tt* geometry. The bracket (,) defines a metric on #3° as above, and also defines a

a®ﬂ—>—\/—71/a/\6

metric on H>! by

where «, B are local sections of H>!
nection on H3? @ H>!, and their complex conjugates on H"2 @ HO3 = H2.1 ¢ H30. Using

It defines a Hermitian metric and compatible con-
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the smooth identification , we obtain a Hermitian metric on H3, which is called the
tt*-metric, together with a connection called the tt*-connection, which we denote by D+ D.
Here D refers to the (1,0) component and D the (0, 1)-component. The relation between
tt*-connection and Gauss-Manin connection can be seen as follows: The Kodaira-Spencer

map gives a homomorphism

Tp — @ Hom (#P377, HP~147P) C End(H?)
p

from which we get a section of the bundle Q}\’/?(End(H?’)), denoted by C. Its complex
conjugate can be identified with a section of QO/\’,} (End(#?)), which is denoted by C.

Let’s choose local holomorphic coordinates {t'} of M. We denote by D; the covariant

0.

derivative along % with respect to the tt*-connection, and C; = C( 55

). Similarly we have
D; and C;. Let eg be a local holomorphic basis of H*?. Then {e; = Cieg} forms a local
holomorphic basis of H?!. The basis of H2! and H39 are given by the complex conjugates

€;, €. The tt* metric is given by

9oo = <607é(]>a 9i5 = — <eivéj>
and the #t*-connection on the above basis reads

Dieo = (gﬁoﬁigog)eg Diej = (gmkaigjm)ek Diéj =0 Dié(‘) =0
Dieg =0 Diej =0 Die; = (9" g,5)ex  Dieg = (9 Big00)é0

Proposition 2.8. The Gauss-Manin connection and the tt*-connection satisfy the following

equations
(2.20) VM —p+tc, VM =D+ C

Proof. We check on the above local basis. D;eq is the projection of VZ»GM ep to the H30

component. It follows from Griffiths transversality that

ViGMe() = Djeqg + Cieg
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Similarly, to check that ViGM ej = D;e; + Cjej, we only need to check that Vl-GM ej has no

130 component. This follows from
/V?MejAéoz—/ejAvfMéozo

On e;, since

_ ~ — =GM - = _
€j = Cjeo = V, €y — Dieo

and D;ég lies in H%3

GM = GMoGM GM 1 5 —GM—GM ~ GM ry = GM
Vi Ej = Vz V] €y — VZ Djeo = VJ VZ eg — VZ Dje() = _VZ

also lies in H%3. It follows from D;e; = 0 that
ViGMéj = Ciéj = Dz‘éj + Ciéj

Finally,
v@'GMéO = 0= D;eg + Cje;

Proposition 2.9. The following identities hold

[Diij] = [D% D}] =0, [Di, }] = [D% Cj] =0
[Di, Cj] = [Dy, Cil, [D;, C5] = [D5, &)
[Di, D;] = —[Ci,Cj]

This set of equations is called the tt*-equations [CVII].

Djeg

Proof. Since the curvature of the tt*-connection is of type (1,1), [D;, D;] = [D;, D;] = 0.

[D;, C’j] = 0 follows from the fact that the Kodaira-Spencer map is holomorphic. All the

other equations follow from VEM = D + O, V&M = D 4 C and that the Gauss-Manin

connection is flat.

tt* equations imply that we actually have a family of flat connections on #3:

V¢=D+aC, V*=D+a'C

]
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where a € C*. When a = 1, we get back to the Gauss-Manin connection.

2.3.3. Special geometry. The tt* equations give very restrictive constraints on the curvature
of the Weil-Petersson metric. We keep the same notations as in the previous section for the
choice of local coordinates and local basis. Since eg is a local holomorphic section of £, the

Kahler potential is in fact given by the tt*-metric

e = (en, &) = g0

and the Weil-Petersson metric is related to the t¢*-metric by

Let ' Z = kaaiGjm be the connection with respect to the Weil-Petersson metric G,

and Ré:'ij = —%Fék be the curvature. We also make the action of C; on basis explicit

. _ ks = _ (05 >
Cieo = CZ-JOEJ‘ = € Ciej = C’ijek Ciej = Cijeo C’ieo =0

‘o ‘.. — (0 ‘s _ Ok ‘s _ (ks _ >
Csep =0 Crej = C;jeo Cie; = ngek Cieo = Cyjeg, =

i

Apply the tt*-equations to the basis, we find

[Di, Djleq = —D;(go%igoa@o) = Gjje0
[CZ', Cj]eo = —C’;ei = —Gﬁeo
[Di, Djler, = —D;(g™igemer) = —0;(9™ Digm)en

= —0;(G™0;Grm — 050, K)e

[Ci,Ciler = Ci(Gyjen) — C5CR em

al
= ijez — Cmc‘;m@l

which shows that

0 _ -
C% =Gy
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and

(2.21) R = =G0}, — Gp6, + CRC L

This is called the special geometry relation. The following quantity
Cijk = Gim JTZ = —V —I/VZGMQO A\ VJGMV;CGMeo =V —1/60 A VZGMVJGMVkGMeo

is called the Yukawa coupling, which plays an important role in mirror symmetry.

Remark 2.10. The relation G;; = g;f) , together with the natural identification

H=LDLRITUSLITM DL

implies that the tt*-connection is the same as the induced connection from the connection
on £ by the metric e ¥ and the connection on T by the Weil-Petersson metric. As an

example of the application, it implies that
ViGMej — Ffjek + 8iK6j = ViGMej - Diej = C’iej

is the projection of Vl-GM VJGM eo to the H1? component. Here we have identified e; with

e ® % under the natural isomorphism H?*!' 22 £ @ Thy.
2.4. Yukawa coupling and prepotential.

2.4.1. Integrabilty of Yukawa coupling. Recall that the Yukawa coupling on the moduli
space M of Calabi-Yau manifolds is the holomorphic section of the bundle £72 ®Sym3(Tj{4)
locally given by

Cijk = \/—I/Q ANV;V;iViQ
where (Q is a local holomorphic section of £. V is the covariant derivative induced by the

connection V¥ on £, the Weil-Petersson connection on T and the Gauss-Manin connection

on H3.

Lemma 2.11.

ViCiki = V,;Cin
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Proof. By the type reason, we have
Cjm = ﬁ/vjvkg AV
It follows that
ViCjn = ﬁ/ ViV, ViQAVIQ+ \/Tl/vjvksz AViViQ

By Remark we see that V;ViQ is of pure type (1,2). Therefore the second term

vanishes and the lemma follows. O

It follows from the lemma that there exists a local section Fyy of £72 such that
Cijk = ViV Vi Fq

Fy is called the prepotential.

2.4.2. Prepotential in canonical coordinates. Using canonical coordinates, we can have an
explicit formula for Fj as shown in [BCOV94]. Let [X] € M and € be a holomorphic top
form on X. Let {4;} be a harmonic basis of H! (X, Tx), and {t'} be the linear coordinates
with respect to the basis. {t'} serves as a local coordinates for the local deformation space

of X around [X] € M. Let

pe=> gt + = pit' + Y prt! € PVYH]
i i |1]>2
which is recursively solved by (2.15))
1, 1.,
fu = 50" G {pr, pu} = —50°GO (uyp)
We will choose the local holomorphic section 2; of £ to be the canonical family
Qr=et = Q

The Kahler potential is given by

€_K—\/—1/Qt/\Qt
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The reason for the name “canonical” is by the following lemma

Lemma 2.12. Let I‘fj be the connection of the Weil-Petersson metric in local coordinates

{t'}, then all the holomorphic derivatives of Ffj and K at t =0 vanish

(2.22) 03, 0iy -+ 03, T15(0) = 0, 03,0, -+ 03, K(0) = 0

for all {iy, -+ ,in}.

Proof. Since

K = —log (ﬁ/QOAQ‘J ~log (m)

where the second term is a power series in ¢ such that each term has at least one #'.

Therefore
0i,0iy -+ 0;, K(0) =0
Similarly,
Il = GM'0;Gjm = GF0;0,0mK
and the same reason applies to Ffj ([

It follows from the lemma that if V; is the holomorphic covariant derivative on vector

bundles constructed from £ and T, with the induced connection, then
V,"t:() = 3ti

We are looking for the prepotential Fg, which is locally a smooth function under the
trivialization of £ by the canonical family €2;. The structure equation Cj;, = V;V;V,Fq is
equivalent to

VisViy Vi, Cijkli=0 = Vi, Vig -+ - Vi, ViV Vi Fo =0

If we choose the canonical coordinates and the canonical family, then it’s equivalent to the
equation

Cijk = 8i8j8kF0



29

The Yukawa coupling reads
Cipe = V1 [ unoo00
= \/jl/ (e Qo) A (0;0;0Ke" Qo)
- VI / Q A (08,0006 - O

= —1/90 A (aiutaj,utakut) F Qo

= —/-1Tr (031140 1140k 1)

where Tr is the trace operator (2.11]) with respect to €.

Proposition 2.13. [BCOV94| Let ji; = 01, where 1y = %5*G (1?). Then the prepotential

can be chosen to be

1 - 1 3
(2.23) V=1F = =5 Tr (9¢:0¢:) + g (113)
Proof. First, we have

1 _
618J6k§ Tr (8@[& 81/%)

= Tr (0;0;0,0%; A Oy) + Tr (0;0,00; A ;00 + (i 4 j) + (i < k)
Since 0* iy = 0 and 0;0j 11+ has no harmonic component, we have

1 _

81-8]-8;@5 Tr (8’(% 81,Z)t)

1 1
= 1 (00,00 g ) + T (30 00, (532) +i0 )+ 0 )

1

a@'ajaké Tr (1) — Tr (9,140 114 Onofr)

O

By the construction of j;, we know that Oy is 0-exact. It’s instructive to write the

formula ([2.24)) as

1 1~ 1
(2.24) V—1Fy = 3 Tr (Mt A 36’“> +z Tr (113)
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where ég,ut is any element whose image under 0 is Ouy. Since Ou; = 0, it doesn’t depend
on the choice in the above formula. This is the form adopted in [BCOV94] to describe the

Kodaira-Spencer gauge theory.

Remark 2.14. All the above formulae apply to the extended deformation space of Calabi-
Yau manifolds, as described in section In fact, the extended deformation space carries

a natural Frobenius structure and Fy is the corresponding potential function [BK9S].

2.5. Kodaira-Spencer gauge theory. We will discuss the classical geometry of the
Kodaira-Spencer gauge theory, which is proposed in [BCOV94| to describe the closed string
field theory on the B-side. The quantization of Kodaira-Spencer gauge theory is the main
content of this thesis. To simplify the notations, we work on Calabi-Yau three-fold and

adopt the original approach with the purpose of motivating the discussion in Chapter [4]

2.5.1. Fields. Let X be a Calabi-Yau three-fold with fixed Kéahler metric and holomorphic

top form Qx. The classical field content of Kodaria-Spencer gauge theory is given by
Fields : kerd N PV

From Hodge theory, we can further decompose it into
HY! @ im o NPVY!

where H'! is the space of Harmonic elements of PV;&I. We will use x + A to represent a

general field, where x € H, A € im9d N PV?. A will be a dynamical field, while x will only

be a background field [BCOV94].
2.5.2. Kodaira-Spencer action. The Kodaira-Spencer action is given by

1 1= 1
(2.25) KS[A,a] = 5T (A A a@A) + T+ A)°

where for %514 we choose an arbitrary element of PV?&2 whose image under 0 is A, and
the value of the action doesn’t depend on the choice since A is J-exact.

Let’s fix  and consider the variation with respect to A

2,1
§.A=0e, €cPV%
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The variation of Kodaira-Spencer action is given by

0KS[A,x] = Tr <A A é@é&l) + %Tr ((z+ A)*5.A)
= —Tr(AAOe) + %Tr ((z + A)*0e)
= T (04N + (9 (2 AP) Ao
= Tr <<§A+;{x+A,x+A}> /\e)
Therefore the equation of motion for the critical point is

= 1
OA+ 5 {z+Az+A}=0

which describes precisely the deformation of the complex structure along the tangent vector

x.

2.5.3. Gauge symmetry. The Kodaira-Spencer action is invariant under the diffeomorphism

group preserving €)x, whose infinitesimal generator is given by
1,0
ker 0 NPVy
The infinitesimal action on A is given by the formula
SaA=0a+{z+ A,a}, where €€ kerdn PV;0
and we can directly check that
do K S[A, x]
1= 1 9 =
= Tr A/\ga{x—i-A,a} +5 T (z+A)?*A (da+{z+ A,a}))
= 1 = 1
= —Tr(ANd((z+ A)a)) — 5 Tr (0 ((z + A)2)) o+ 3 Tr ((z + A)?0 ((z + A)a))
1 2
5T ((a(:c+A) ) (x—l—A)a)
1
6

Tr(@(:c+A)3a) :éTr((:U+A)38a> =0



32

If we choose the gauge-fixing condition
J*A=0

then for each fixed small background field z, there’s a unique critical point of of the Kodaira-

Spencer action solving

JA(z) + % {2+ Alz), 2+ A(x)} =0, FA=0A=0

The critical value K S[z, A(z)] becomes a function on x, which is precisely the prepotential

(see @21)).
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3. PERTURBATIVE QUANTIZATION OF GAUGE THEORY

In this section, we give a quick overview of the algebraic techniques of perturbative
renormalization of gauge theory in the Batalin-Vilkovisky formalism developed by Kevin
Costello in [Cos11]. Such techniques will be intensively used for the BCOV theory on Calabi-
Yau manifolds in the later sections. In section 3.1 and 3.2, we motivate by discussing the
finite dimensional model for perturbative theory and Batalin-Vilkovisky geometry, which
can be viewed as the toy model of quantum gauge field theory. In section 3.3 and 3.4, we
discuss the framework of perturbative renormalization of quantum field theory, and review
the obstruction theory for renormalization with gauge symmetry in the Batalin-Vilkovisky
formalism. In section 3.5, we prove a result on the absent of ultraviolet divergence for a
certain type of complex one dimensional field theory that will be used in constructing the

quantization of BCOV theory on the elliptic curve in section

3.1. Feynman Diagrams. Let V = R" be a linear space, with linear coordinates {xl}l <N

We would like to consider the following integration

/V dNzexp % (;Q(l‘, x) + M(z + a))

as a function of {a’}. Here h is a positive real number, Q(z,z) = > Q;;z'a’ is a non-
2%

degenerate positive definite quadratic form, and I(x) is a polynomial function whose lowest

degree component is at least cubic. The integration is not convergent in general, and we

understand it as a formal power series in A

m

_OO Nel(x CLmeXl_1 z,x
(3.1) Z/\(a)—mz_:ohmm!/vd [z +a) pﬁ( QQ( 7 )>

To compute each term in the summation, we consider the following auxiliary integral
1 .
zlJ = [ a¥ —— 'J;
7 = [ dew ( Q)+ 3 )

_ 1
_ e%Q 1(J,J)/ dNz exp <_Q(;UJ,$J)>
v 2h

- NesQ ')
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where Q71(J,J) = Y (Q7 14 J; J;, 2y = 2t — A Y (Q™HY ., (Q‘l)ij is the inverse matrix
2 J
of Qij, and N is the normalization factor

N =2[0] = /Vdeexp (—%Q(w’fv))

Therefore

(3.2) Zy(a) = Ne29 " (5a5a) exp (M (a) /1)

where Q71 (£, 2) =Y (@) &2

Now we give a graph interpretation of the above formula. Let

x):ZI(k)(x), 1% (2) k:‘ Z Il(lk i, T g gtk

k>3

where I%) is zero for k sufficiently large. Let I' be a graph with tails such that each vertex

is at least trivalent. We define the weight of the graph as a function of a

Wr(Q™H, M)(a)

as follows. For a vertex with valency k > 3, we decorate the edges connecting to this vertex
by indices i1, - ,ix € {1,2,---, N}, and put the value %I“Zk on this vertex. For each
edge connecting v1, v9, with decoration 7 on v and j on vg, we put the value i (Q‘l)ij . For
each tail connecting to a vertex, with decoration i, we put the value a®. Then Wp(Q 1, I)(a)
is defined to be the product of all the values associated to the vertices, edges, and tails,

and take the summation over the indices of the decoration.
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Proposition 3.2.

(33) 70 =N 3 T
r

where the summmation is over all possible graphs as above, and Aut(T) is the automorphism
group of I' as a graph with tails.

Proof. This follows directly from (3.2]). The only tricky thing is the factor | Aut(I')|. We

leave the details to the reader. O

Proposition 3.3. Let F)(a) = hlog <ZW*(@), then

B WF(Qila )\I)(CL)
(3.4) Fy(a) = ﬁr co%ected |Aut(T)|

where the summation is over all connected graphs.

F) is called the free energy in physics. Formula and are called the Feynman
diagram ezxpansions. We can furthermore decompose F(a) in terms of powers of A. Let I’
be a connected diagram, V(I') be the set of vertices, E(I') be the set of internal edges, and
T(T) be the set of tails. Since each vertex contributes h~! and each edge contributes &, we

see that Wr(Q™1, A\V) contains the power of & by

B IVIOHED)| _ plr)-1

where [(T") is the number of loops of I'. Therefore we have the following expansion

(3.5) Fa(a) =Y hF)4(a)

920

where

-1
(3.6) Fyry(a)=h > WFQEXQt IQAI)(G)
¢ connected |Aut( g)|
g-loops

The summation is over all connected g-loop diagrams.

Remark 3.4. It’s easy to see that for each homogenous degree of a, the summation in (3.6))

is actually a finite sum, hence always convergent. This shows that the free energy with the
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fixed loop number is in fact a well-defined formal power series of a. In fact, we can also

allow V' to have non-negative powers of h. Precisely, let
"= {Ic C[[d, hl]| I is at least cubic in a’ modulo /i}
Then Feynman diagram expansion actually gives a well-defined map

AL g

Z ng(Q_l,I)

-1 o
I - W@*NI)=h At (D)

I connected
This will be the key formula for the renormalization group flow equation in quantum field

theory.

3.2. Batalin-Vilkovisky geometry.

3.2.1. Odd symplectic geometry. We would like to add fermions and also gauge symmetry

to the previous discussion. The super-geometry will play an important role in this case.

Definition 3.5. A supermanifold of dimension (n, m) is defined to be a superspace (M, Opy)
where M is a topological space, Oy is a sheaf of graded commutative ring such that lo-
cally it’s isomorphic to C*°(R"™) @ A*R™. Let Jys be the subsheaf of nilpotent elements of
O, then (Mg, Oreq) = (M, O/ Jyr) defines a topological manifold, which is called the
reduced manifold of (M,Oyy).

Let (M, Oys) be a smooth super-manifold of dimension (n,m). Let U be a local open
subset of M, and we choose coordinates {z*,£} which are even and odd elements of Oy

respectively. Every elements f of Oy can be uniquely written in the form
I 4
f=Y ¢ fi(a)
T

where I C {1,---,m} runs over the index set, ¢/ = [] ¢!, and f;(2) is a smooth function of
el
{x'}. Let Oy be the space of compactly supported elements in Q. There’s a well-defined

integral on U

/ d"zd™¢: Oy, — C
M
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f = /Ud”xdmffE/U A"z frg..n(z")

red

which is called the Berezin integral. If we choose another local coordinates {y*,n%}, and let

Ozt Ozt

. _ oyl onf
J(%f,% 77) - gga 8Za
Sk o

be the Jacobian matrix. Note that there’s an extra sign here which is compatible with the
chain rule J(z,¢&;2,0) = J(z,&;y,1n)J(y,n; 2,0) due to the anti-commutativity of the odd

variables. The Berezin’s formula [Ber87] says that

(3.7 [ araanr = [ ayamyberia. gy
where Ber refers to the Berezinian (or the super-determinant) defined as follows: let A be
the matrix
Ao A Arg
A1 Az

where Ai1, Ago are even, Aqs, Ao are odd, and Ags is invertible, then
(38) Ber A = det (An - A12A;21A21) det (Agg)il
The Berezinian Ber has the same multiplicative property as the determinant

(3.9) Ber (AB) = Ber ABer B

Example 3.6. Consider the super-manifold R2? and two sets of coordinates (2,22, €1, €2),

(y*,y2, n',n?), with coordinate transformation

ol =yl flp? 22 =42
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The Jacobian matrix is given by

J(z, &y,m) = . .
—e¥pt 0 e¥ 0

and Ber(J(z,&y,n)) = e ¥ (1 — n'n?). Let
f(a;6) = (@) + f1(2)€ + fo()€® + f126'€7
Then Berezin’s formula in this case is simply
[ Eapatet ) = [y (7 0,000 02) = € F6 ) + Fiale o))
which is just an integration by parts assuming f has compact support.

Definition 3.7. The Berezin bundle Ber(M) of a supermanifold M is the locally free
Oy sheaf of rank one defined as follows: for each local chart U with coordinates (z°,£%),

we associate the basis Dy (z?,£%) such that the transition function between two charts

{U, (:ci,ga)} and {V, (yi,na)} is given by
Dy(a', &) unv = J(@', €% y",n®) Dy (y',n)lunv
A smooth section of Ber(M) is called a Berezinian density.

It follows from Berezin’s formula (3.7) that the Berezin integral is a well-defined map
/ :Te(M,Ber(M)) — C
M

where T'. (M, Ber(M)) is the space of compactly supported smooth sections of Ber(M).

Example 3.8. Let X be a smooth manifold, and M = T'x[1] be the super-manifold of the
shifted tangent bundle of X, i.e., the fibers of the tangent bundle will have odd degree. If
we choose local coordinates {z'} on a small open subset U of X, then it induces a canonical

local coordinate system on M

{a",0}
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where we can view § as dx’ which forms a basis of odd functions on the shifted tangent
bundle. Since dz! and #° transform in the same way under coordinate transformations, the

Berezin bundle Ber(M) is in fact a trivial bundle. Under the natural identification

P - ws

of the functions on M with the differential forms on X, it’s easy to see that the Berezin

integral becomes the ordinary integral of differential forms

/M<I>:/Xw<1>

Definition 3.9. Given a super-manifold (M, Oyy), the tangent sheaf Ty is defined to be

the sheaf of graded derivations of the graded commutative algebra Oy
Tar = Derc (Onr)

which has a natural graded Lie algebra structure. The sheaf of p-forms QF, is defined to

be
O = Homo,, (Symb,, (Tu1]),On)
where [1] is the shifting operator which shifts the grading by 1. There’s the natural de

Rham differential

d: Qb — Qb

Locally, if we have coordinates {xi, 50‘}, then { 822., 8%} form a local basis of Tx, and

{dwi, dfa} form a local basis of one-form Q. Note that dz’ is of odd degree and d¢“ is of

even degree respectively. The differential d is given by

i 0 o 0
d:;dm axi—&—;dg 76

Definition 3.10. An odd symplectic manifold, or P-manifold, (M,Op;,w) is a superman-

ifold with an odd closed two-form w which gives a non-degenerate pairing on the tangent

sheaf.
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Let (M, Opr,w) be an odd symplectic manifold. For any function f € Oy, we can define

its Hamiltonian vector field V; by
L(Vp)w = (—1)FHdf
The Lie bracket on vector fields induces a Poisson bracket on functions via

{f,9} =Vi(g) = u(Vi)u(Vg)w
which satisfies
{f7g} = (_1)””9‘{97 f}

V{f,g} = (_1)‘f|+1 Vi, Vgl

Vi, = (_1)\f|fvg+(_1)\f|\g\+\g\gvf

Suppose that we have in addition a no-where vanishing Berezinian density p on M. It

defines a measure on functions with compact support by

f—>/ufE/Muf

The divergence of a vector field is defined via

(3.10) /ﬂ(divuX)fZ —/X(f)

I

which satisfies the equation
(3.11) div,, (£X) = f div,(X) + (~D)X I ()
The odd Laplacian operator with respect to density w is defined to be
1.
Au(f) = 3 div, Vy

Locally, suppose we can choose Darboux coordinates [Sch93] {z%, &}, where x%’s are even

and &;’s are odd, such that

w=Y da'dg, p=1
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then

(3.12) V= Z (;S@ f>

1) Z (W ) -

318 0 =10 =3 (57 (ger) + 9 (59 (a67)

and

(3.14) Auf = Z 2 axz

Lemma 3.11.

(3.15) Ay (fg) = (Auf) g+ (DAL +{f. g}
Proof.
1 .
AL(fg) = idlvuvfg

= %div# ((_1)|f|fvg + (_1)|f||9|+|9|gvf)

— (—1)|f‘fA“g + (—1)|f”9|%vg(f) + (—1)‘f||9‘+|9‘gAMf + %Vf(g)

= (AN g+ DV EALg+{f, 9}

Definition 3.12. A Batalin- Vilkovisky supermanifold (M,w, p) is an odd symplectic su-

permanifold with Berezinian density g such that Ai =0

It follows from Lemma that the sheaf of functions Oj; on a Batalin-Vilkovisky
supermanifold is a sheaf of Batalin-Vilkovisky algebra.

The good thing about Batalin-Vilkovisky supermanifold is that it has a natural co-
homology theory similar to the smooth manifold case. The counter-part of closed cy-
cles is the closed orientable Lagrangian super-manifold, which is middle dimensional sub-

supermanifolds where the odd symplectic form restricts to zero. Let L be a Lagrangian
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super-manifold of M. The odd sympletic form induces an exact sequence of vector bundles
0= Tz = Tarlz = (T2[1])" = 0

which implies that Ber(M)|;, = Ber(L)®?. Therefore we have an induced Berezinian density

on L given by pr = (/.

Proposition 3.13. [Batalin-Vilkovisky , Schwarz [Sch93]] Let ® be a smooth function with
compact support on a Batalin- Vilkovisky manifold M, and L is a Lagrangian super-manifold
in M. If A® =0, then fuL ®|;, depends only on the homological class of L. Moreover, if
& = AU, then f#L ol =0.

Example 3.14. Let X be an orientable smooth manifold, and M = Ty [1] be the super-
manifold of the shifted cotangent bundle of X, i.e., the fibers of the cotangent bundle will
have odd degree. If we choose local coordinates {2’} on a small open subset U of X, then

it induces a canonical local coordinate system on M
{$ia ‘91}

where we can view 6; as 0, which forms a basis of odd functions on the shifted cotangent
bundle. The sheaf of functions on M is therefore identified with the sheaf of polyvector
fields on X

R~

Onm NTx

® = f(x)0;,---0;, — Po=f(x)d

xT

i A A O,

If {y,n;} is another set of local coordiantes, then the Jacobian is given by

, - ox’
A SN S 2
J(.’E 7017y 7771) - det <ay]>

and the local basis of Ber(M) transformes as

, oz’ ~
D(z%. 0 2 D(v'. n;
(':U 9 92) det <ay]> (y 9 772)
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Let Q be a no-where vanishing top differential forms on X. It follows that u = Q®? gives

naturally a Berezin density on the super-manifold M. The Berezin integral is then given

by
/(I):/X(P¢D—Q)/\Q

where I is the contraction between polyvector fields and differential forms.

There’s a canonical odd symplectic form w, which is given in local coordinates by

w = Z dxtdb;

Let’s compute the induced Batalin-Vilkovisky operator. Locally, we will write Q = p(x)dz'A

-+« Adzx™. Using the formula
/(divu V)d = —/V(QJ)
" I
for any vector field V' and compactly supported &, we find
diV'u 8961 = 8xip(x), diV'LL 891. =0
It follows that

1
Au(®) = Sdiva Ve

= %divu (Z (89, ®) i + (—1)I®! Z(aﬂ@) agl.)

)

= ;Z (95, ®) Dyip + Zaziagicp
This is equivalent to the following formula
Pp,o - Q =d(Pp Q)
i.e., A, can be identified with the de Rham differential d under the isomorphism
On 5 A Tx ok

In particular, Ai = ( is satisfied and we obtain a Batalin-Vilkovisky structure on M.
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Now we consider the Lagrangian super-submanifolds of M. A naive one is the underlying
reduced manifold X. The density u induces a density ux = /i = Q on X, and the Batalin-

Vilkovisky integral in Proposition [3.13]is just

/ (I>|X_/¢)‘X/\Q_/(Pq>|—9)/\9
HX X X

More generally, let C' < X be a smooth orientable sub-manifold, N¢,x be the normal
bundle. Then
Neyx[ € Tx (Y

is naturally a Lagrangian super-submanifold of M, which we denote by Lg. If we choose

local coordinates z!,--- , 2™ on U C X such that

CNU={z" =...= 2" =0}

then L¢ is locally described by

We will identify the sheaves
@ Lo = /\*NC /X

The induced Berezin density pur. can be described by

/ @Z/(‘I’FQ)Ic, V(I)GOLC
HLg C

The Batalin-Vilkovisky integral in Proposition [3.13]is therefore

/ ®|1., :/ (Po - Q)|o, Vo € O
159 c

C
If A,® =0, then Pp - Q is closed, and the above integral only depends on the homology
class of C.

3.2.2. Batalin-Vilkovisky formalism. Now we come back to the finite dimensional integra-
tion theory. Let V = RY be as before, but we have a Lie-group G acting on V. We will use

g to denote the Lie algebra of G. Let f be a function on V that is G-invariant. We would
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like to make sense of the following integration

/ of/h
V/G

in a homological fashion. Let O(V) be the space of functions on V. We can naturally
identify O(V/G) as the G-invariant subspace O(V). First, we replace (Oy)¢ by the
Chevalley-Eilenberg complex C*(g, O(V')), which can be viewed as the space of functions
O(g[1] ® V) on the super-manifold g[1] @ V. The Chevalley-Eilenberg differential gives an
odd derivation of O(g[1] ® V'), which is called the BRST operator. Let X denote this odd
vector field, which satisfies

(X, X]=0
The next step is to view g[1] @ V as a Lagrangian supermanifold of its cotangent bundle
v
E=(Tyuev) =sllleoVe V' [-1]eg'[-2]

and add a term which deals with the odd variables. Using the canonical odd symplecture
structure of F, the odd vector field X gives rise to the Hamiltonian function Hx which
vanishes at the origin. The G-invariance of f says that X(f) = 0, which implies that
{f,Hx} = 0. The condition [X, X] = 0 implies that {Hx, Hx} = 0. Let

So=f+Hx
then S satisfies the following classical master equation
(3.16) {S0,50} =0

Therefore we are lead to consider the integral

(3.17) / eSo/h
L

as a candidate for fV/G ef/". Here L is a Lagrangian super-submanifold of F, which is
usually obtained by a small perturbation of g[l] @ V in FE, such that the quadratic part

of S is non-degenerate along L. Therefore we can do perturbation theory using Feynman
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diagram techniques as before. Such a choice of L is called the gauge fizing following physics
terminology.

However, we would like that the formula (3.17) is independent of the choice of L, as
motivated from the expression fv e el/" . Therefore we search for a deformation Sy by

S=S+» NS
i>1
such that
Ae®/m =0

Here we have chosen the standard Berezinian density on E. Using Lemma|2.3} it’s equivalent

to
(3.18) hAS + % {5,851 =0

which is called the quantum master equaiton. Once we have found such S solving the

quantum master equation, we can form the integral

/ oS/
L

which is now invariant under the small deformation of L. Such formalism is called the
Batalin- Vilkovisky formalism.

Usually, we can isolate the quadratic part S(()z) of Sy by
So =S5 + I

where the lowest degree term of Iy is at least cubic. S(()Q) plays the role of propagator in
our discussion of Feynman diagrams, and Iy is called the classical interaction term. The
Hamiltonian vector field of 562) is an odd vector field, which is denoted by (). The classical

master equation and the degree condition implies that

1
{857,557y = 0. {5, o} + 5 {Io, Io} = 0
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which is equivalent to
2 1
(3.19) QRT=0, Qo+ 5{10,10} =0
The quantum master equation becomes
1
(3.20) div@ =0, QI+§{I,I}+hAI:O

where I = Iy + Y. A*S;. The condition div@Q = 0 says that the vector field () preservers
E>1
the measure.

3.3. Effective field theory and renormalization. We will consider the quantum field
theory in this subsection. We focus on the case that the fields are geometrically described

by sections of a graded vector bundle E on a smooth orientable manifold M
Fields : & =T'(M, E)

which is an infinite dimensional vector space. In quantum field theory, we would like to

make sense of the following “path integral”

/ (DSl
PpeESE

where S[¢] is a functional on E, which is called the action functional of the theory. Unfortu-
nately, since & is not finite dimensional, the integration measure [D¢] is difficulty to define.
However, in many situations, the Feynman diagrams similar to still make sense, which
can be used as a candidate for the path integral in the perturbative sense. The resulting
theory is called the perturbative field theory. The difficulty of the infinite dimension goes
into the fact that the values of the Feynman diagrams in this case are usually singular
(divergent). This is where Wilson’s approach of effective field theory and renormalization
comes in and plays an important role. We will explain Wilson’s effective field theory point

of view in this subsection as well as set up our notations following [Cos11].

3.3.1. Functionals and local functionals. Let & = I'(M, E) be the space of fields, which is

a topological vector space in a natural way. If M, N are two smooth manifold and E, F' are
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two graded vector bundles on M, N respectively, the following notation will be used
I'(M,E)®T'(N,F)=T(M x N,EX F)

which can be viewed as the completed projective tensor product (see [Cos1l]).

Definition 3.15. The space of functionals O(&’) on & is defined to be the graded-commutative

algebra
0(&) = [[ 0™ (&) = [[ Hom (é"®",(€)s

n>0 n>0

n

where Hom denotes the space of continuous linear maps, S, acts on & &n yia permutation
(with signs from the grading), and the subscript S, denotes taking S,, coinvariants. Ele-
ments of O™ (&) are said to be of order n. Given S € O(&), its component of order n is

called the degree n Taylor coefficient, denoted by D, .S.

Given a functional S of order n, we will use the following notation to represent the map

S.&5" 5 C
o Q- RQa, — S[¢1aa¢n]

The product structure is defined as follows. Let S; € OM™(&), Sy € O™)(&), then

(5152) [ah T 7an+m]

= Z(_1)|0—|+‘S2|(‘ad(1)I+m+|ao(n)‘)Sl [050(1)7 te ,Oéo(n)] SQ [aa(n+1)v o ,Oéo(n_;,_m)]

g
where |o| is the parity for permuting ;- @y to Qg(1) """ Ag(ntm)- We will also use

Sym™(&) for S, invariant elements of £%", and O(&) is sometimes written as

H Hom (Sym" (&), C)

n>0

S is called local if S takes the following form

Sla, - an] = /M Di(ar)- - - Du(cun)d Vol
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where D;’s are arbitrary differential operators from & to C°°(M), and we have fixed a
nowhere vanishing volume form d Vol to do the integral. The space of local functionals on

& will be denoted by Oj,.(&). In other words, S is local if

S—/ﬁ
M

where L is poly-differential map from [] & ©n 0 the line bundle of top differential forms
n>0

NPT on M (see [Cosli] for more precise definition). £ is called the Lagrangian.

Given an element o € Sym"™ (&), it defines a contraction map on O(&) by

(555) 1= 0SS,

which can be viewed as order n differential operators in the functional sense. If a € &,

then % defines a derivation on the space of functionals, i.e.,

0 o 9
% (3152) = <6a51> So + (*1)|QHS‘81 <60&SQ>

3.3.2. Derivations. The space of derivations on O(&) is defined to be

Der(O(&)) = H Der™(0(&)) = H Hom <£®”,<§)

n>0 n>0 Sn

which can be viewed as the space of formal vector fields. The map
Der(O(&)) x O(&) — O(&8)
can be described as follows. Let X € Der(™(&), 8 € O™(&), then
X(8) e 0" L()
is given by the explicit formula

X(S) [0417 ce ,an+m—1]

—1)lel
(_1)|XHS‘ Z (()S [X [O[U(l)v T aao(n)} y Oo(nd1)s " " aao(n—l—m—l)]

n!(m —1)!
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Using this formula, it’s easy to see that the graded Leibniz rule is satisfied
X(Sng) = X(Sl)SQ + (_1)|51||X‘5’1X(SQ)
The space of local derivations is the subspace of Der(O(&’)) defined by

Deryo(O(&)) = [ [ PolyDift (@@@", @@) o

n>0
where PolyDiff represents the space of poly-differential operators [Cosl1]. Both Der(O(&))

and Der,.(O(&)) have a natural graded Lie algebra structure.

3.3.3. Feynman Diagrams. Let P be an element
P € Sym?(£%?)
and S be a functional valued in C[[#]]
S € 0(@)[[nl]

such that S is at least cubic modulo A. We would like to consider the following functional

e}
e oS/h

This is usually not well-defined due to the infinite sums. However, its logarithm makes

sense, which is denoted by
(3.21) W(P,S) = filog (eﬁ%es/ﬁ) € O(&)[[H)]
In fact, by Remark W (P, S) can be defined by

(3.22) W(PS)y=h > m

r connected
where we are summing over connected diagrams I', whose weight W (P, S) is computed by
putting AP on the edges and S/h on the vertices. The condition of S implies that only

non-negative powers of h appears in the above formula, and for each fixed power of h,
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there’s only a finite sum. Therefore it’s a well-defined element of O(&)[[h]]. P is called the

propagator, and S is called the vertices.

3.3.4. Effective functional and renormalization. In many examples of quantum field theory,
the action will usually look like

S=5+1

where S5 is the quadratic part of S taking the form

5o, 6) = — /M (6,0)

I is the interaction part, whose lowest order term is at least cubic. Here [ is certain
Laplacian type operator on &, and (,) is certain inner product on &. We will use this inner
product to identify E with its dual EV. Following the philosophy of Feynman diagrams in
finite dimensional case, the propagator will be defined by the inverse of [, which can be

represented by the Green kernel
PeT(MxM-AEXE)

where A is the diagonal of M x M. The problem is that P is not an element of Sym?(&),

but exhibits a singularity along A. Therefore the naive definition

JW(PI)/h2 / eS/h
&

would not work, since the weight of the Feynman diagral Wy (P, I) will be divergent.

On the other hand, the propagator P can be re-written as

oo
P:/ dte ™
0

where e~ is the heat kernel of (I, which is an element of Sym?(&) if t # 0. We can define

the regularized propagator by the cut-off

€

L
(3.23) Pl = / dte™™
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which is now smooth for any e, L > 0. Given a functional S € O(&), the Feynman diagram

interpretation shows that
W(P[?,5) = W(P? + P}, 5) = W(P[2, W(PL2,5))
for any 0 < Ly < Lo < L3. This motivates the following definitions

Definition 3.16. A family of functionals S[T] € O(&)[[A]] for T > 0, which are at least

cubic modulo A, are said to satisfy the renormalization group flow equation if
(3.24) S[L] = W (P, S[e))
holds for every €, L > 0.

Definition 3.17. A family of functionals S[T] € O(&) for T' > 0, which are at least cubic

modulo A, is said to satisfy the tree-level renormalization group flow equation if

(325) S[L] = Wiree (PLa S[E])

€

holds for every €, L > 0. Here for Wy, we mean that we only sum over the tree diagrams

in the Feynman diagram expansion.

It’s easy to see that if S[T] = > 795,[T] satisfy the renormalization group flow equation,
9>0
then Sy[L] satisfies the tree-level renormalization group flow equation.
In the tree-level, there’s no divergence for Feynman graph integrals. In fact, let .S be an

arbitrary local functional, then the limit
T L
S[L] = lgr(l) Wiree (P, S)

exists and defines a family of functionals satisfying tree-level renormalization group flow

equation such that %ir% S[L] = S. Therefore the ultraviolet divergence is a quantum effect.
H

Definition 3.18. [Cosll] A system of effective funtionals on & is given by a family of
functionals S[T] € O(&)[[A]] for any T > 0, which are at least cubic modulo %, such that

the renormalization group flow equation holds and %in% S[T] becomes local in the following
—
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sense: there exists some T-dependent local functional &7 € Oj,.(&)[[R]] for T' > 0 such that

(3.26) lim (S[T] = @) =0

Let S € Ojc(&)[[h]] be an even local functional, which is at cubic modulo A. The
following functional is well-defined

W (P, S)

As we have mentioned, it’s singular as e — 0. This is called Ultraviolet divergence in physics
terminology. The following result is widely used in physics literature, and a mathematical

proof can be found in [Cos11]

Proposition 3.19. There exists e-dependent local functional
SCT(G) € hOoc(&)[[7]]

such that the limit
lim W (PE, S 4+ ST (e))
e—0

exists.

Such correction S¢T(¢) is called the counter terms. It follows that
S T) = lin W (PL, S + 5T (e))
€—

defines a system of effective funtionals. If the manifold M is compact, then Pp° is also a
smooth kernel. Therefore

Seff[oo] - Tlggo Seff[T]
is well-defined element of O(&)[[%]]. The following diagram illustrates the procedure

counter terms

classical action S S+ ST (e)

Feynman diagram
renormalization

effective funtional S¢//[T]

This procedure is called the perturbative renormalization. Note that the choice of the

counter terms is usually not unique.
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Remark 3.20. In some special field theories, the limit liH(l) W (PL, S) exists already. Chern-
e—
Simons theory on three dimensional manifold is such an example [AS92, [AS94] Kon94]. We

will prove in section [3.5] that one-dimensional holomorphic theory is another such example.

3.4. Gauge theory and quantum master equation. We will quickly review the gauge
theory and its quantization in Batalin-Vilkovisky formalism following the discussion in

[Cosl1].

3.4.1. Classical gauge symmetry in Batalin-Vilkovisky formalism. Our starting point for
the geometric data of gauge theory in Batalin-Vilkovisky formalism is the following
(1) Fields. The space of fields will be the space of smooth sections of a graded vector

bundle F on a smooth orientable manifold M of dimension d, denoted by
&=T(M,E)

(2) Odd symplectic structure. A degree —1, skew-symmetric and fiber-wise non-degenerate

pairing of graded vector bundles
(3.27) (,): EQFE — dety

where dety; = det(TgM) is the line bundle of top differential forms on M. We
assign the grading on detj; such that it’s concentrated in degree zero, and (,) is a
morphism of graded vector bundles of degree —1. It induces a natural isomorphism

E = EY @ detys[—1], which defines a Poisson bracket
{= =} : 01c(&) ® O(&) = O(&)

as follows: let S1 € Ope(&) and So € O(&). The locality of S implies that it’s

given by a lagrangian £ which is a poly-differential map from [] & ©n o det M- It
n>0

specifies uniquely a poly-differential map from [[ & en—1 ¢ I'(EY) ® dety. Using
n>0
the isomorphism of graded vector bundles E = (E)Y ® detys[—1], it further defines

an element of local derivation

VSI € Derloc(o (éa) )
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which is called the Hamiltonian vector field of S;. Explicitly, we have the formula
Sylar, - yan] = (Vs [aa, -+ yan—1],an), Yai, - ,a, €&
The Poisson bracket is defined via
(3.28) {51,592} = Vs, (S2)

and it’s easy to check that {S7, Sp} = (—1)I%1I1S21 {5, 51,
(3) The differential. An odd linear elliptic differential operator @ : & — & of cohomo-
logical degree 1, which is skew self-adjoint with respect to the symplectic pairing,

and Q2 = 0. It defines the quadratic part of the action

(3.20) @@:;/ﬂk@,eeg

@ naturally induces a derivation on the space of functionals which we still denote
by @, and it’s precisely the Hamiltonian vector field Vg,.

(4) Gauge firing operator. An odd linear elliptic differential operator QF : & — &
of cohomological degree —1, which is self-adjoint with respect to the symplectic

pairing, and (QGF )2 = 0. Moreover, the operator

H = [Q,Q]

is a second order elliptic operator which is a generalized Laplacian.

(5) Classical action. The interaction term of the classical action
I? € 01pe(&)
which satisfies the classical master equation
(3.30) Qﬂ+%{ﬁkﬂ}:o
If we write the full action by

Scl — S2 + [cl
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then the classical master equation is equivalent to
(3.31) {Scl, Sd} =0

Remark 3.21. The classical master equation {S o gel } = 0 defines a gauge symmetry which
leaves the action S invariant. In fact, the gauge transformation is represented by the

Hamiltonian vector field associated to S¢, and the gauge invariance is nothing but
Vga (8) = {578} =0

Example 3.22 (Chern-Simons Theory). The underlying manifold will be a compact 3-
dimensional Riemannian manifold (M, g). Here g is a chosen metric. Let G be a compact
Lie subgroup of U(N), G be the Lie algebra of G. For simplicity, we will consider the trivial
G-bundle P on M. The space of fields for Chern-Simons theory in the Batalin-Vilkovisky
formalism is
£ =" (M, G)[1

where Q*(M,G) is the space of differential forms valued in G. We have shifted the degree
by one such that the degree zero part Q'(M,G) is the space of connections on P, which
is the field content for the usual Chern-Simons theory. We will use |a| for the degree of
a€é.

The odd symplectic structure is given by
(a,8) = (- Tra A B, Va,8eé&
where Tr is some normalized Killing form on G. The sign is chosen such that
(o, 8) = (1)1 (5, 0)
The differential @ is given by the de Rham differential

Q=d:6 &
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and the gauge fixing opeartor is given by the adjoint of d with respect to the chosen metric
g
QF =d .6 ¢
Therefore H = [d, d*] = dd* + d*d is the standard Laplacian operator.
Now we describe the classical action S¢°. S¢S will have non-trivial Taylor coefficients

in order 2 and 3

.

where

SQCS [al,ag]:/ (doq,oz2>:—/ Trag Adas, Vai,as € &
M M

and

ngs (a1, g, as] = (—1)'0‘2|/ Trag A [ag, as)
M

where the extra sign (—1)|a2‘ is to make sure that 530 9'is graded symmetric in our grading

convention for &. Then

QS5 =0

as it gives rise to total derivative. Also
{5§%,5¢°} =0

which is equivalent to the Jacobi identity. In particular, the classical master equation is
satisfied
1
QS§® + 5 {557°, 55} =0

3.4.2. Regularized BV operator. The heat kernel e *# for t > 0 defines a smooth section of
EX (EY @ dety)

on M x M. Using the isomorphism E = EY ® det,, we will identify the above bundle with
EX E, and use
K; € éa®2

to represent the heat kernel e * under the above identification. Note that since the

symplectic pairing is odd of degree —1, this K; will have degree one. It’s easy to see that
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the Poisson bracket for S1 € Ojpc(&), 52 € O(&) is just

0 0 0
s 0 (9 _(—1\IS1lg, 2
(3.32) {51, 5]} =lim <8Kt (5152) <8Kt Sl> 2 = (=D S1 57 52)

However, the limit usually doesn’t exist if neither S; nor S, is local.

Definition 3.23. The regularized BV operator Ay, at L > 0 is the second order operator

on O(&) defined by
0
- 0Kp

The regularized BV bracket {, }1, is defined by

Ap

{51,852}, = A (5152) — (ALS1) S2 — (-1)I511s A LS,
for any S;,S2 € O(&).

The oddness of K, implies that A? = 0, therefore {Ay, {, }1} defines a Batalin-Vilkovisky

structure on O(&) for each L > 0.

3.4.3. Regularized propagator. By the form of the quadratic term of the classical action
(3.29), we see that the naive propagator would represent the inverse of the operator Q.

The gauge fixing operator Q¥ allows us to replace it by the operator

1
Gr 1
@ H

whose kernel in fact exists, but exhibits singularities on the diagonal of M x M. By the
same philosophy of Wilson’s effective functional point of view, we can smooth out this

kernel by using certain cut-off as follows
Definition 3.24. The regularized propagator PF is defined to be the kernel
L L R
(3.33) pPL = / dtQF K, = / dtQCT et ¢ &2
€ €
for ¢, L > 0.

The regularized propagator gives a homotopy between BV operators at different scales.

Precisely,
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Lemma 3.25.
(3.34) 0.2 —a—n
. ’ aPEL — € L
It follows from the lemma that
(3.35) [Q, ewﬂ = (hA, — hAy) e"orE

3.4.4. Quantum master equation. Let {S[T]}-, be a system of effective action, which we
mean that S[T] € O(&)[[R]] for each T > 0, at least cubic modulo /i, and satisfy the

renormalization group flow equation

S[L] = W(PZ, S[e])

for all €, L > 0.

Definition 3.26. {S[T]}, is said to satisfy quantum master equation if
1

(3.36) QS[L] + 3 {S[L],S[L]};, + hALS[L] =0

holds for some L > 0.

Note that if (3.36)) holds for some L > 0, then it holds for all L > 0. In fact, (3.36) can

be written symbolically by

(3.37) (Q + hAL) S/ =

The renormlization group flow links the quantum master equation at different scales
(Q+hAp) S/ = (Q + hAL) (J%L eSH/ﬁ) = P (Q 4 BA,) €SI/

Definition 3.27. A quantization of the classical action I satisfying the classical master
equation is given by a system of effective functionals {S[T]}r~o which satisfies the renor-
malization group flow equation, quantum master equation, asymptotically local as T' — 0,
and the classical limit condition

lim S[T] = I modulo
T—0
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3.4.5. Obstruction theory. By Proposition a family of effective functionals which satis-
fies renormalization group flow equation and classical limit condition always exists, though
not unique. But there’s usually an obstruction for the quantum master equation.

Assume that the effective family of actions {S[L]} satisfies the RG flow

eSILI/h _ ehPEL ollel/n

and satisfies the quantum master equation modulo A", i.e.
1
QS[L] + S{SIL], S[L]}r + hALSIL] = O(h™1)

We will write

S[L] =) h*S,[L]

k>0

and the classical limit condition becomes

lim So[L] = I
lim o[L]

Let
O[] = QL] + S{SI1], SIE]}s + hALS[I]

or equivalently
(3.38) O[L]eS[L]/h =1 (Q + KAL) SILI/R
The compatibility of renormalization group flow and quantum master equation implies that
(3.39) O[L]eSH/h = ehPfO[e]eS[e]/h
By assumption, we can write

OlL] = ) RO,[I]
k>n+1

Equation (3.39) can be rewritten as

(3.40) oSILI/h+SOIL)/h+2 _ hPE S /450 /hn+?



61

where ¢ is an odd variable of cohomological degree —1, §2 = 0. This is equivalent to saying
that So[L] + 00,+1[L] satisfies the tree-level renormalization group flow equation, which
implies that

Ont1 = lim Oni1[L] € Opc(6)

exists as a local functional.

On the other hand, since (Q + hA L)% = 0, we have
0= (Q+nAr) (OLeSIEM) = (QOIL] +{S[L], O[L]} + hALO[L]) eSIH/"
which implies that
(3.41) QOIL] + {S[L],O[L]} + hALO[L] =0
If we pick up the leading power of A, we find
(3.42) QOn1[L) + {SolL), Onii[L]} 1 = 0
We can take the limit L — 0 and find
QOn41 4+ {I%,0n11} =0

ie., Opy1 is Q + {I°, -} closed. Therefore O, gives a cohomology class

(Onta] € HY (O1oe(6),Q + {17, )

If [O41] is trivial, which means that there exists a local functional U,, 41 of cohomological

degree 0 such that

On+1 = QUn+1 + {Id7 Un—i—l}
Let Up41[L] be the effective functional such that So[L] + eU,1[L] satisfies the tree-level
renormalization group flow equation for some odd variable €, €2 = 0. We modify S[L] by

SylL] ifg#n+1
Sy =4 "

SylL] —Uy[L] ifg=n+1
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then
QS'[L]+ S{S'L], S (L]}, + hALS'[E] = O("+)

and S’[L] satisfies the renormalization group flow equation up to order A"*1. It’s proved
in [Cos11] that we can furthermore modify Sg[L] for g > n + 1 such that S'[L] satisfies the
renormalization group flow equation.

It follows that the existence of the modification of S[L] to let O,,41[L] vanish is equivalent
to the vanishing of the cohomology class [Op+1]. Therefore [Oy41] is the obstruction class
for extending the quantum master equation to order n + 1.

The complex (Ojoe(&), Q 4 {I,-}) is called the deformation-obstruction complex of the
gauge theory in the Batalin-Vilkovisky formalism. The corresponding cohomology groups
H~', HY H! play the role of automorphism, tangent space and the obstruction space for
the quantization of the classical action I¢. The obstruction class is also called anomaly in
physics literature.

The cohomology of (Ojpe(&),Q + {I,-}) can be computed using the Jet bundle. See
Appendix [B] for a quick summary for the D-module and jet bundles. Let E be the graded
vector bundle where the fields live, and J(E) be the sheaf of jets. Let Djs be the algebra

of differential operators on M. Then J(E) can be naturally viewed as a Djs-module. Let
J(E)” = Homeg (J(E), Ciy)

be the sheaf of continuous linear maps of Cj-modules, which has an induced Djr-module

structure. The space of local functionals on F is precisely

Oloc(@@) = detM ® H Symgfj (J(E)V)

Dy n>0

If we mod out the constant functional, then we are in a slightly better situation.

Proposition 3.28 ([Cosll]). There’s a canonical quasi-isomorphism of cochain complexes

L
(3.43) Otoe(&)/C = detar Q) [ [ Symee (J(E)Y)

Dy n>0
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If we denote by g the Djy; Lo,-algebra,
g=J(&)[-1]
where the L, structure is given by
Q + Via € Derjoe(8)

Recall that Vja is the Hamiltonian vector field associated with I¢. Then @},.(E)/C can be

expressed in terms of reduced Chevalley-Eilenberg complex

L
Oloc(g)/c = dety ® C:ed (g)

Dy

Here det s has a natural right Dj;-module structure. By (B.2)), we have a quasi-isomorphism

of complexes of Djs-modules
detys ~ Q}k\/l[d] ®C?v? Dy

It follows that the deformation-obstruction complex is quasi-isomorphic to the de Rham

comoplex of the Dys-module C, (g)

2 (Creq (9))1d]

whose cohomology can be computed via spectral sequence.

3.4.6. Independence of gauge fixing condition. In most examples of gauge theory, the gauge
fixing operator Q¥ is given by the adjoint of @ with respect to a chosen metric. A
particular example is the Chern-Simons theory described in the beginning of this section.
We will focus our discussion on theories of this type here. The more general set-up is
described in [Cosll]. We would like to understand how the theory changes under the
change of the gauge fixing condition, i.e., the change of the metric. We will sketch the
result of [Cosll] which says that the quantizations at different gauge fixing conditions are
homotopy equivalent.

We first describe the simplicial structure of the space of quantizations.
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Let A" be the standard n-simplex, {g;};ca» be a smooth family of metrics parametrized
by A™. This family of metrics leads to a family of operators given by the adjoint of Q) with

respect to the metric g;, depending smoothly on ¢t € A®,
E—ERCRn
The Q7 -linear extension of the above defines our gauge fixing operator over A"
QU 6N, 2 £,

If
A™ — A"

is a face or degeneracy map, then one can pull a family of gauge fixing operators over A"
to A™. In this way, gauge fixing operators form a simplicial set, which we will denote by
GF(&,Q). Since the space of metrics is contractible, this defines a contractible simplicial
set.
Given a family of gauge fixing conditions over A", we consider the following operator
acting on & ® Q5
H=1[Q+ dt,QGF]

where d; is the de Rham differential on Q2 . H is linear in 0y ~and we assume that it is
a generalized Laplacian. Let

K,.c &80,
be the kernel for the €2} -linear operator e " which defines the regularized BV operator

0
0K,

Ay

Similarly, we define the regularized propagator P over (U, by the kernel of the operator
L
/ duQGFe_“H
€

Definition 3.29. A quantization of the classical action I¢ over 7, is given by a fam-

ily of effective functionals {S[L|}Lco, where S[L] € O(&) ® Q4 [[A]], which satisifes the
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renormalization group flow equation

GSILI/E _ eﬁﬁ oSt/
the quantum master equation over Q7
(Q +dy + hAL) S/ —
and similar classical limit condition and asymptotic local conditions for L — 0.

This defines a simplicial set of quantizations, which we will denote by Quan(&, Q). Note
that a 0-simplex of Quan(&, Q) is just given by the quantization at a fixed metric as we
have discussed.

From the above construction, we see that there’s a canonical map of simplicial set

Quan(&,Q) — GF(&,Q)

The proposition in |[Cosll] says that this map is in fact a fibration of simplical sets. Since
the space of metrics is contractible, this implies that any two fibers of the above map is
homotopy equivalent. Therefore any choice of metric for quantization will be equivalent.

This will be implicitly used in our construction of the BCOV theory on the elliptic curves.

3.5. Feynman graph integral for holomorphic theory on C. We consider some gen-
eralities for the Feynman graph integrals of field theories living on the complex plane C,
where the lagrangian consists of holomorphic derivatives only. Examples of such theories
include one dimensional holomorphic Chern-Simons theory [Cos| as well as one dimensional
BCOV theory [CL]. We prove that the counter terms can be chosen to be zero and the
Feynman graph integrals are finite, i.e., ultraviolet divergence is absent. This will be used
to give an explicit local formula for the quantum master equation in the one dimensional
BCOV theory in section

Let z be the linear holomorphic coordinate on C, (1 = —4%% be the standard Laplacian

operator. The following notations will be used throughout this section

L
dt 2
HLI(z,2) :/ — e lFIF/4t
¢ . Amt
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which is the kernel function for the operator feL dte™ ™. In specific examples, the principle
part of the propagator will be the holomorphic derivatives of of HZ | as we will see in the
example of BCOV theory.

Given an arbitrary connected graph I' without self-loops, we consider the following Feyn-

man graph integral

Wp,{ne}(HEL, D) = / H d?z, H 8ZeHEL(ze,2e) ®, where z, = 2i(e) — Zr(e)
veV (T) ecE(T)

here V(I') is the set of vertices, and E(I") is the set of edges. We choose an arbitrary
orientation of the edge, so [(e) and r(e) represents the corresponding two vertices associated
to the edge. n.’s are some non-negative integers associated to each e € E. ® is a smooth
function on CVMI with compact support. In the above integral, we view H(z.,Zz.) as
propagators associated to the edge e € F, and we have only holomorphic derivatives on the

propagators.
Theorem 3.30. The following limit exists for the above graph integral

. L
lim Wi, (H, @)

Proof. Let V = |V(T')| be the number of vertices and E = |E(T")| be the number of edges.

We index the vertices by
vi{l,2,- V= V@), V=|V(I)
and write 2; for z,(;) if there’s no confusion. We specify the last vertex by ve
v(V) = v,
Define the incidence matrix {py e }vev(r),ecrm) DY

1 lle)=w
Pve=9q -1 r(e)=v

0 otherwise
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Define the (V' — 1) x (V — 1) matrix Mrp(t) by
1 .
(3.44) Mp(t)ij = ) Po(iey Polier  1S6J<V —1
e
e€E(Q)
where t. is a variable introduced for each edge coming from the propagator. Consider the

following linear change of variables
zi=yityy 1<i<V -1
v =yv
The graph integral can be written as

Wr o} (H , @)

V-1 A\
2:1 Pu(i),eYi
1=

V-1 &t
— dzyv / d2yi/ e =1

ecE(T)

e
exp | = > M)y | ©
ij=1

Using integration by parts, we get

WF,{ne}(HeL?(I)) = /

V-1 Te
V1 2. Pu@),eMp (t)ig 9 )
i=1 21 el< c)q>)
te ayj

where C' is a constant which doesn’t depend on {t.} and {y;}, and ® is some smooth

function with compact support. To prove that lir% va{ne}(H L ®) exists, we only need to
€E—
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show that
vl dt 1=
lim/ del/ Sexp | —- Mr(t): jviy;
e—=0 Jov-1 H [e,L])E 1];([1“) 4 i;l

l'm/ dte 1
= 11 —_—
=0 Jie,[)E e H(D) 4t det Mp(t)

exists. By Lemma [3.31] we have

lim dic 1 = lim / H dte —1
=0 Jie 1P «<H(D) 47rte det Mp(t) €0 (LI e iy T‘-Te”[%(;e(I‘) el;[Tte
where Tree(I') is the set of spanning trees of I'. Let v(1),v(2) be two vertices of T,
{e1,--- ,er} be the set of edges that connects v(1),v(2). Let I' be the graph obtained
from I' by collapsing v(1) and v(2) and all the edges eq, - - - , ex into one single vertex. Then

[ is also a connected graph without self-loops, with E(I') = E(I')\{e1,--- ,ex}. Obviously,

for non-negative t.’s,

Z Ht (; "‘iei"‘tek> Z Ht

TeTree(T") e¢T T<Tree(T) e¢T

Therefore
1 1
I1 / % * H/ — [ ~"m=
ecE(T T€eTree(T') e¢T Z byt -ty e€E(T) TcTree(T) e¢T

IA

H/SWH/ —~ T

k
c€b(l) TeTree(l') e¢T

H/dte SRR

e€E(l TeTree(T) e¢T

IN

where C'(L) is a constant that depends only on L. By successive collapsing of vertices, we

see that ]iH(l) f[e e Heerm) 4(?15 W(t) exists. This proves the lemma. O
€e— ) €
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Lemma 3.31. The determinant of the (V —1) x (V —1) matriz {Mr(t); ; }1<ij<v—1 defined

by equation is given by

(3.45) der ety = > [+

T€eTree(T") e€T ¢

where Tree(T") is the set of spanning trees of the graph T.
Proof. See for example [BEK0G]. O

Remark 3.32. A tree T C T is said to be a spanning tree for the connected graph I if every

vertex of I lies in T'.

Definition 3.33. Given a connected graph I' and two disjoint subsets of vertices Vi, Va C
V(T), ViNVy =0, we define Cut(T'; V1, V5) to be the set of subsets C' C E(T") satisfying the

following property

(1) The removing of the edges in C' from I" divides I' into exactly two connected trees,
which we denoted by I'1(C'), ['2(C), such that V4 € V(I'1(C)), Vo C V(I'y(C)).

(2) C doesn’t contain any proper subset satisfying property (1).

It’s easy to see that each cut C' € Cut(I'; V1, V3) is obtained by adding one more edge to

some {e € E(I")|e ¢ T'} where T' is some spanning tree of I

Lemma 3.34. The inverse of the matrix Mp(t) is given by

MITl(t)’i,j = Ppl(t) Z H le

CeCut(T;{v(i),v(5)},{ve}) e€C

where

Pr(t) = Z Hte:det Mr(t) H te

TeTree(T) egT ecE(T)

Proof. Let

1
A= Pr) Z H te

CeCut(T;{v(i),v(45)},{ve }) e€C
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For 1 <i <V —1, consider the summation

V-1
Pr(t) Y AyiMr(t)j: = Mr(t)j,i > I 2
j=1

j=1 CeCut(T;{v(i),v(4)},{ve}) eEC

1
_ 3 e > 3 Puli)e’ T o)

CeCut(Ti{v(i)}{ve}) €€C  e€E(G) 1<j<V—1

v(D)eV(I'1(C)),ve €V (T'2(C)) v(§)€r1(C)
1
-y M x4k
CeCut(T;{v(i)},{ve}) e€C e'€E(G)
v(2)eV(T'1(C)),ve €V (I'2(C)) l(e)=v(i),r(e)eV(I'2)

or r(e)=v(i),l(e)eV(T'2)

- Y I«

T€Tree(T") egT
where in the last step, we use the fact that given v # v, and a spanning tree T" of I, there’s

a unique way to remove one edge in T', which is attached to v, to make a cut that separates

v and ve. Therefore
V-1
> AiiMr(t)i=1, 1<i<V -1
j=1

Similar combinatorial interpretation leads to

<

1
Ay Mr(t)e; =0, 1<4,j<Vi,i#j
1

i

We leave the details to the reader. It follows that A; ; is the inverse matrix of Mr(t); ;. O

Lemma 3.35. The following sum is bounded

V-1 1
Zl Poi),eMp ()i
1=

te

<2, VeeE(G),1<j<V-1

Proof.
V-1 Poti
DM 1)y
i=1 te

B 1 Pu(i),e
=0 2 e 2 =

CeCut(T;{v(j)} {ve}) e€C  1<i<V-1 ¢
v(H)eV(T1(C)),we eV (I'2(C)) v(1)er1(0)
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= 1 Z [lecote . Z [lecote
Pf(t) ) te Pf(t) ) te
CGCUt(F;{v(])al(e)L{U'77‘(6)}) CGCUt(F;{v(])vr(e)L{U'7l(6)})
Since each cut in the above summation is obtained from removing the edge e from a

spanning tree containing e, the lemma follows from fact that Pr(t) = > remyee(r) [Legr te

represents the sum of the contributions from all such spanning trees. O
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4. QUANTUM GEOMETRY OF CALABI-YAU MANIFOLDS

In this section we discuss the quantization of BCOV theory on Calabi-Yau manifolds. In
section 4.1, we introduce the classical BCOV action which generalizes the original Kodaira-
Spencer action on Calabi-Yau three-folds to Calabi-Yau manifolds of arbitrary dimensions,
and which also includes the gravitational descendants. In section 4.2, we discuss the general
framework of constructing higher genus B-model from the perturbative quantization of the

classical BCOV theory.

4.1. Classical BCOV theory. Let X be a Calabi-Yau manifold of dimension d with a
fixed holomorphic volume form Q2x and K&ahler metric. We will follow the notations used
in section PV}* will be the space of polyvector fields, and Qx induces a natural trace
map of degree —2d

Tr:PVy = C

The original Kodaira-Spencer gauge theory is developed in [BCOV94] to describe the
B-twisted closed string field theory on Calabi-Yau three-folds. The space of fields is

kerOo=H®imd C PV}*

where H is the subspace of harmonic elements with respect to the chosen metric. The
Kodaira-Spencer gauge action is

1 1= 1
KS[z+p] = §Tr <88,u> w4 6Tr(:n+,u)3

where z € H, 1 € im d. Here we have enlarged the space of fields in section [2.5] to include
polyvector fields of all types, which can be viewed as the Batalin-Vilkovisky formalism of
the classical gauge action [BCOVY94]. The equation of motion with respect to the
variation of u is

1
8(m+u)+§{x+u,az+#}:0

which describes the extended deformation space of X. However, the sheaf

U — kerd|y C PVY'
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is not a sheaf of C°°(X) modules, i.e., the fields are non-local. This non-locality of fields and
also the non-locality of the Kodaira-Spencer action lead to the difficulty for its quantization.
To bypass this difficulty and generalize BCOV theory to arbitrary dimensions, we con-

sider the derived version of ker 0. The operator
0:PVY = PVY

is a cochain map of cohomological degree —1. 9 can be viewed as a vector field on the
infinite dimensional space PV}*, while ker 0 is the fixed locus. The equivariant cohomology

construction leads us to consider the complex
PV([t]

with differential 9 — td. Here t is a formal variable of cohomological degree two. This will

be our new space of fields

(4.1) & =PV[t]
with a differential

(4.2) Q=0-10

The non-locality of the quadratic term in the Kodaira-Spencer action comes from the

non-local odd symplectic pairing on im 0
1
(43) (0, B) = {a, B) > Tr (aa> 8
and the quadratic term can be written as
1,

where we are in a very similar situation of section except for the non-locality. However,

all we need for the local odd symplectic pairing in section [3.4.1]is to define a Poisson bracket
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on the space of functionals. Let’s recall how this is done. First, we define a map
Oloc(PVY") = Derpe(PVY)

as follows. Let S be a local functional. If the odd symplectic pairing is local (coming from

a fiberwise pairing on vector bundles), then we can always rewrite S in the following form
S(O[l, o ,Oén) =w (VS(al7 o 7an—1)7 an)

which defines Vg € Derloc(PV}*). In the current case, although w is non-local, the trace

pairing Tr is in fact local. Therefore we can write S in terms of
S(Oél, e 7an) =Tr (WS(ah o ,Oén_l),an)

for some Wy € Derjo.(PVy"), then the expression in (4.3) suggests the following

Definition 4.1. The Hamiltonian vector field Vg € DerlOC(PVﬁé*) of a local functional

S e (’)loc(PV}*) is defined to be the composition

[T (PVy)™ T pyy

n>0
o
Vs

PVY”
The Poisson bracket on the space of funtionals is defined as the pairing

() 01e(PVY) @ O(PVY) — O(PVY)

S1®8y — {51,595} = Vs (S2)

The Poisson bracket defined for functionals on PV}* can be naturally extended to func-

tionals on &. Let K7, € Sym? (PVY), L > 0, be the heat kernel of the Laplacian H = [9, 9],

which is determined by the following equation
E_LHOé = P1 TI‘(PQO()

if we formally write K = P, ® Ps.
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Definition 4.2. The regularized BV operator Ap for L > 0 is defined to be the second

order operator

)
AL =555 06) = 06)

where 9K, € Sym?(PVY") C Sym?(&) is the kernel for the operator de~!, and we have
naturally identified PV}* as a subspace of &. The reqularized Batalin-Vilkovisky bracket is
defined via Ay, by

(4.4) {81,892} = A (S152) — (ALS1) So — (—1)1511S;A LS,
for any S, S2 € O(&).
Lemma 4.3. If Si € O (PVY"),S2 € O(PVY'), then the Poisson bracket is identical to

the following limit
{Sl, SQ} = lim{Sl, SQ}L
L—0

Definition 4.4. The classical Poisson bracket {, } for functionals on & is defined to be the
pairing
O1oe(8) x O(&) — O(&)
(4.5) S1 xSy — {Sl,SQ} = lim{Sl,SQ}L
L—0
A local functional S € Oy,.(&) satisfies the classical master equation if
1
(4.6) QS + 5 {5,5} =0
Now we are ready to define the classical action for the generalized BCOV theory.

Definition 4.5. The classical BCOV action functional SPCOV € 0),.(&) is defined by the

Taylor coefficients

D, gBCOV (tkl oy ) (Thky T Yo Tr (a1 -+ ) if >3
n a1, "o | =

0 ifn<3
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where

e — kl e k” — n-= 3
<Tk1 Tkn>0 /Mo,n 1/}1 wn <k17 Tty kn)

Note that the cohomological degree of D,,SBCOV is
—2(d—3) —2n
Lemma 4.6. SBCOV satisfies the classical master equation
1
SBCOV - SBCOV SBC’OV -0
Q + 2 { ’ }
Proof. Note that 9SBCOV = 0 since it’s a total derivative. We have

(QSBCOV)[tklOél,"‘ 7tkn04n]
= —Z:E<Tk1...7'k.+l..-7'kn >0 Trag -+ 0a; - - o
- 7Zi<7—k1"'7ki+1"‘7'kn >0 Tr{ay, a1+ G- an}
i
1 ~
— §Zi<’r]€1-..7’ki+1'-.7’kn >0 Tr{alaa]}alaza]an
7]

where we have used the formula

Tr(0a)s = —% Tr{a, B}

which follows from the BV relation d(a3) = (da)B + (—1)*ladp + {a, 8} and the self-

adjointness of @ with respect to the trace pairing. On the other hand,

{SBCOV’ SBCOV}[tklOél, L ,tk"Oén}
= Z +(70 HTki>0<7'() H T, o Tr (GH%) H a;
Ic{1,n} i€l NIs i€l jelIc
1
= —5 Z i<TOHTki>0<T0 H Tkj>0TI‘ HOJZ‘, H ay
Ic{1,,n} i€l jeI¢ i€l jelI©
1

= =5 > Hno]lwono [T > Tr{anag)--

Ic{1,+ n} icl jele i€l jele
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= —2(7711_2) Z :I:<T0HTki>O<TO H Tkj>0 Z Z Tr{ai;aj}"‘

Ic{1,,n} i€l jele i€l jelc k#i,j

= sy X EmIImotm IT o Trlos o) -

i,5,k {i,k}CI,jelc i€l jele

_2(711_2)2 Z i<TOHTk¢>0<To H Tkj>0Tr{ai,aj}---

i,g,k i€l {jk}CIc il jele
1 N
p— —7zi<7-k1-o;TkJ+1-ooTkn>OTI‘{a/L7aJ}a1;cualu-oa]o:can
2(n —2) &
1,5,k
1 .
- Zi<7—k1 T TR -Tkn>0TI‘{ai,Oéj}041 T Qe Qe Qi
2(n—2) vy’

Z‘?j

where we have used the topological recursive relations

< Thy+1Tky *** Thky, 0= Z <TOHTki >0<7’0H7‘kj>
1el,{2,3}CI°e i€l jere
The classical master equation now follows. O

4.2. Quantization and higher genus B-model.

4.2.1. Quantization of BCOV theory.

Definition 4.7. The regularized propagator of BCOV theory is defined by the kernel

L
(4.7) PL—_ / dud*dK,

Let
6P€L :0(&) — O(8)

be the operator corresponding to contracting with PL. We have

(4.8) [Q, apeL] — A~ Ap

Definition 4.8. A quantization of the BCOV theory on X is given by a family of functionals

F[L] =) WF,[L] € 0(6)[h]

920
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for each L € R, with the following properties.

(1) The renormalization group flow equation
F[L] =W (P(e, L), Fle])
for all L,e > 0. This is equivalent to

h—0 _
GFILI/h _ 50T JFld/h

(2) The quantum master equation
1
QF[L] + hALF[L] + i{F[L],F[L]}L =0, VL>0

(3) The locality axiom, as in [Cosll]. This says that F[L] has a small L asymptotic
expansion in terms of local functionals.

(4) The classical limit condition

lim Fo[L] = §BCOV
L—0

(5) Degree axiom. The functional D,F, is of cohomological degree
(dim X — 3)(2g — 2) — 2n

(6) We will give &(X) = PVy[[t]] an additional grading, which we call Hodge weight,

by saying that elements in
QO (AT X)) = PVR*(X)

have Hodge weight k +m — 1. We will let HW(«) denote the Hodge weight of an
element o € &.

Then, the functional F; must be of Hodge weight

(3—dimX)(g —1)
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The dilaton axiom. Let
Eu:0(&) — O(&)
be the Euler vector field, defined by
Eu ®=nd

if ® € OM(&). Let 1-t € tPVY’, which associates a derivation % € Der(&).

Let’s define the dilaton vector field D by

0

b=Eu=5a7

Then the dilaton axiom asserts that there exists G[L] € hO(&)[[A]] such that

(D +2 <h§h - 1)) F[L] = QG[L] + {F[L], G[L]}1 + hALG[L]

This is equivalent to the following equation

<Q +hAL+9 (D + 2h§h>) SFILI/h+SGL/h _

where § is an odd variable with 6% = 0. Moreover, we require the following renor-

malization group flow equation

CFILI/RHSGILI/E _ JapE JFlel/htoGld /h

The string equation axiom. Let
T(,l) 8= &
be the operator defined by

*1y i k>0
Ty (t*p) =
0 ifk=0
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We define the following operator Y[L] on & depending on the scale L

fOL dud*0e "Heo o € PV
Y[L][a] =

0 a € tPV[[¢]]
Both T(_;y and Y[L] induce a derivation on O(&), which we still denote by the
same symbols. Let Tr € Sym?(&") denote the Trace operator. We define the string
operator S[L] by

0

1
aﬁ—ym+—ﬁ

Then the string equation axiom asserts that there exists K[L] € hO(&)[[A]] such

that
(Q + hAL + 6S[L]) FIH/mHKILI/E —

where § is an odd variable with 62> = 0. Moreover, we require the following renor-

malization group flow equation

ha
pL Flel/h+0Ke/h

GFILI /oKL /n _ g

Remark 4.9. The reason for the string operator taking the above form is that S[L] is
compatible with renormalization group flow equation and quantum master equation in the
following sense

o 9

S[L]e"PE = ¢"orF S[¢]

[S[L], (@ + hAL)] =0

All the above properties of F[L] are motivated by mirror symmetry and modeled on the
corresponding Gromov-Witten theory on the A-side. This will be discussed in more detail
in the next section. The main goal for the quantum BCOV theory is to find F[L] satisfying
the above properties on Calabi-Yau manifolds. We will prove in the next chapter that in

the case of elliptic curves, such quantization exists and is also unique up to homotopy.



81

Let’s assume that X is a compact Calabi-Yau manifold and we have already found such

a quantization F[L] of BCOV theory on X. Since X is compact, the following kernel

P = —/ dud*0K,
L

is in fact a smooth kernel. This allows us to take the following limit
F[oco] = lim F[L] € O(&)[[R]]
L—oo
Observe that Llim K7 is the projection to harmonic parts, hence
— 00
lim 0Ky, =0
L—oco
The quantum master equation at L = oo then says that
(4.9) QF[c] =0
which implies that we have an induced map on Q-cohomology
(4.10) D,F4[o0] : Syme (H*(£,Q)) — C

where H*(&, Q) is the cohomology of the complex & with respect to Q.

Lemma 4.10. Given a Kdhler metric on X, we have a natural isomorphism
H* (X, AT )[[t]] = HY (X, A" Tx)[[t] = H* (&, Q)

where H*(X, \*T'x) is the sheaf cohomology of N*T'x on X, and H*(X, N*Tx)[[t]] is the

space of Harmonic polyvector fields.

Definition 4.11. Given a quantization F[L] of BCOV theory on X, the associated B-model

correlation functions Ff,n, y are defined by the commutative diagram

FB

gm.x +Symg (H* (X, A*Tx) [[f]]) — €

|

DpFgoo] : Symg (H*(£, Q) C
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Lemma 4.12. F5

on.X satisfies the following dilaton equation

Fim—l,x |:t7 tklﬂla T 7tknun} =(29-2+ n)Fin’X tklul, e ,tk",un} Vg,n
and the string equation
F.ﬁn-‘rLX |:17tkllu'17 o 7tkn/*[/’n:| = ZFﬁn,X |:tk1/*[/17 ot 7tki_1ﬂi7 T 7tkn//[/n:| 5 VQg +n Z 3
i

for any p; € H*(X, AN*Tx).

Proof. The dilaton axiom at L — oo says that

(D 42 (haah - 1)) Floo] = QG[o0]

Therefore DF[occ] = 0 if we restrict to @-cohomology classes. This proves the dilaton

equation. The proof of string equation is similar. O

4.2.2. Higher genus mirror symmetry. Let X and XV be mirror Calabi-Yau manifolds.
The mirror symmetry says that the A-model topological string correlation functions on X
are equivalent to B-model topological string correlation functions on XV. It’s long been
known that the A-model correlation functions are given by the Gromov-Witten invariants,
and it’s proposed in [BCOV94] that B-model correlation functions could be defined via
Kodaira-Spencer gauge theory. The formulation of Fgm yv serves for this purpose. Let
7 be local coordinates on the moduli space of complex structures of XV around the large
complex limit, and we use X to denote the corresponding Calabi-Yau manifold. Let g be
the complexified Kahler moduli on X around the large volume limit. The physics statement

of mirror symmetry predicts a mirror map
T q=q(T)
and an isomorphism of cohomology classes

®: H* (A*Tx) — H* (A" Txv)
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such that

FA [tk1a1,~-- ,tk”an} — lim FZ_ o [F1®(ay), - ,tk"CI)(ozn)]

gvn’X;q T—00

On the left hand side we have the generating function from the Gromov-Witten theory in
the A-model (see Definition . On the right hand side, there exists certain mysterious
7 — oo limit that we could be able to take around the large complex limit of XV predicted
in [BCOV94]. This anti-holomorphic dependence can be understood as a choice of complex
conjugate splitting filtration for the Hodge filtration on polyvector fields. We refer to [CL]
for the more precise description. This generalizes the well-established genus zero mirror
symmetry to higher genus case, with all descendants included.

In section [6] we will prove this mirror symmetry statement for one-dimensional Calabi-
Yau manifolds, i.e., elliptic curves. The 7 — oo limit in this case turns out to be the
well-known map from almost holomorphic modular forms to quasi modular forms. It would

be extremely interesting to understand the higher dimensional cases in the future.



84

5. QUANTIZATION OF BCOV THEORY ON ELLIPTIC CURVES

We will construct the quantization F[L] of BCOV theory on elliptic curves in this section.
We will show that there exits a unique quantization F[L] satisfying dilaton axioms, and

F[L] satisfies a set of Virasoro equations.
5.1. Deformation-obstruction complex.

5.1.1. Translation invariant deformation-obstruction complex. Let E be the elliptic curve
E=C/(Z&Zr)
where we will fix the complex moduli 7. The space of fields of BCOV theory is
&p = PVg [[t]

Let J(&g) be the Dg module of smooth jets of polyvector fields valued in formal power
series C[[t]]. By Proposition the deformation obstruction complex for the BCOV

theory on elliptic curves is given by

Op (Creq (J(€E)[-1])) 2]

We would like to consider the functionals which are translation invariant. This allows us

to consider the following L, subalgebra of J(&g)[—1]

a=J(Ep)"[-1] C J(€p)[-1]
where J (&) denotes the translation invariant polyvector fields. Let z be the linear coor-
dinate on the universal cover C of E, then

J(6p)" = Cllz, 2))[dz, &.][[¢]]

where dz € PV%I, 0, € PV}E’,O are the translation invariant polyvector fields on F, and z, Z
represents the jet coordinates. Let

o 0
p-c|Z 2
C[@z’@z}
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be the subspace of translation invariant differential operators of Dg. J(&g)" has a naturally
induced D-module structure. Then the space of translation invariant local functionals on

&r modulo constants is given by

C®p ] Hom (sym{g (J(&8)F) ,<c>
k>0

where C has the D-module structure such that %, % act trivially. Let
0" = Cldz,dzZ]

be the translation invariant differential forms on £. The Koszul resolution gives the quasi-

isomorphism of complexes of D-modules
C=Q* 2| ®c D

Therefore the deformation obstruction complex for the translation invariant theory is quasi-

isomorphic to the de Rham complex of of D-module C7,_,(g)

O (Creq (9)) 2]

Lemma 5.1. The natural inclusion of translation invariant deformation obstruction com-

plex into the full deformation obstruction complex
O (Crreq (J(E8)P[1])) [2] = Qi (Crea (J(8r)[-1])) [2]

18 quasi-isomorphc.

Proof. The Dg Lo algebra J(&g)[—1] is explicitly given by
J(&p)[=1] = CF(E)][z, 2]]ldz, O:][[t]][-1]

with differential Q = 0 — t0. By considering the 0 cohomology, we see that there’s a
quasi-isomorphism

J(&B)[-1] = C=(E)|[2, t]][0:][-1]
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Similarly, we have

J(6p)"[-1] = C[[z, t]][0:][-1]

Let DMl = (C[%] be the translation invariant holomorphic differential operators, and
Qhob* (Cl[z, 1]][0-][—1]) denote the holomorphic de Rham complex of the D"*l-module C[[z, ¢]][0.].

Then it’s easy to see that
O (Crea (C[[2, 1]][8:][-1])) = Cldz] @c 2" (Ceq (C[[2, 1]][8:][1]))
and
Dz (Crea (C=(B)[[z, 1]][0:][1]) = C*(B)[dz] @c 2" (Crq (Cllz, 1)][0:][1]))
Since H*(C*(E)[dz],0) = C[dZz], we find the quasi-isomorphism

O (Creq (Cllz, 1]][0:][-1])) = Qp (Creq (CT(E)[[2, t]][0:][-11))

and the lemma follows. O

5.1.2. Modified degree assignment. We will modify the degree assignment in &z as follows
deg (dz) = 1,deg (0.) = —1,deg(t) =0
and recall that the Hodge weight is defined by
HW (tkdzmo") =k +n —1
Lemma 5.2. With the modified degree assignment as above, we have
deg @ = 1,deg (Vgscov) =1

and the degree axiom and Hodge weight axiom of F4[L] on the elliptic curve is equivalent
to

deg (Fg[L]) =0, HW (F,4[L]) =2—2g
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Lemma 5.3. The tangent space of translation invariant quantization of BCOV theory at
genus g is given by

H3 54(Q" (Crea (9)) [2])

and the obstruction at genus g lies in

H%*QQ(Q* ( :ed (g)) [2])

Here the subscript 2 — 2g means that we take the homogeneous degree 2 — 2g part of the

Hodge weight.

We will use this modified degree assignment throughout this section, which is equivalent
to the original cohomology degree and Hodge degree assignments, but more convenient
in identifying the tangent space and the obstruction space for the quantization of BCOV

theory.

5.1.3. Coupling to dilaton equation. Recall that the dilaton vector field is given by

0

D:E“_a(l-t)

The dilaton axiom is equivalent to the following modified quantum master equation
0
(5.1) <Q +RAL +6 (D + 271%)) eFILI/hHGILI/h —

where § is an odd variable of cohomological degree one.

Lemma 5.4.

a 2
<Q+hAL+6<D+2hah>) =0

Lemma 5.5. The homotopic dilaton equation is compatible with remormalization group

flow, i.e.,

<Q +hAL+0 (D + 2h§h>> OpL _ JOpL (Q + hA 46 (D + 2n;)>

Proof. This follows from

B
[D + 2ho hapeL] - [Eu haPGL} + 2hdpr = 0
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In order to incorporate the dilaton axiom, we will enlarge the space of functionals to
O (&) ® C[d]

by adding the odd variable §. The dilaton axiom is equivalent to find F[L] + dG[L] €
O (&) [[h]]®C]d] which satisfes the renormalization group flow equation, the modified quan-

tum master equation ([5.1)) and the classical limit condition
lim F[L] 4+ 0G[L] = SPOY mod h
L—0

The obstruction theory is also modified correspondingly. Suppose that we have con-
structed F[L] 4+ 0G[L] € O (&) [[h]] ® C[0] which satisfies the modified quantum master

equation up to genus A97!, i.e.,
(Q +hAL+6 <D + 271;)) oFILI/h+6G[L]/h _ %O[L]GF[L}/}HéG[L]/h

where

O[L] = WO,[L] mod h*!
The renormalization group flow equation implies that

O[L]FIH/m+0GILI/n L O[e]Flel/1+3GLel/n

which is equivalent to

FILI/HH6GL)/inO[L) 9+ _ hOpr JF[d/n+0Glel/hnOle /hot

where 7 is an odd variable, n? = 0. This implies as before that Fo[L] + nO[L] satisfies the

classical master equation, hence
= 1li L & o
Oy Lli%og[ ] € Otoc(&) ® C[4]
exists as a local functional. On the other hand,

<Q +RAL+§ (7) + zn(jﬁ)) <;O[L]€F[Ll/ﬁ+6cm/n> _o
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which is equivalent to
QO[L] + hRALOIL] +§ (D + 2h88h — 2) O[L] +{F[L] + 6G[L],O[L]}; =0
If we pick up the leading power of A, we find
QO (L] + 6 (D + 29 — 2) Oy L] + {Fo[L], Oy[L1}1 = 0
Taking the limit L — 0, we see that the obstruction class O, satisfies
(5.2) QO, +6(D+29—2)0, + {SBOV 0,1 =0
Then the slight modification of the discussion in subsection leads to

Proposition 5.6. The obstruction space for extending a quantization of BCOV theory at

genus g — 1 to genus g which satisfies the dilaton axiom lies in the cohomology class

H)_y, (O1oe(&) @ Cl8], Q + 8 (D + 2g — 2) + {SPCOV, -1

If the obstruction class is zero, then the space of isomorphic classes of extensions is a torsor

under

H%*Qg (O1oc(€) @ C[8],Q + 6 (D +29 — 2) + {§BCOV, )

Here the subscript 2 — 2g denotes the Hodge weight.

5.2. Uniqueness of the quantization. We consider the translation invariant quantiza-
tion of BCOV theory on E which satisfies the dilaton axiom. The relevant deformation

obstruction complex is

(5:3) 2 (Crea (9)) [9]12]

where § is an odd variable of cohomological degree one which arises from coupling to dilaton

equation. Here g is the L, algebra

where the Lo, structure is induced from @ + {S Boov, —}.
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We consider the quantization at genus g. We focus on the complex CY_, (g) [0] and its
cohomology, from which the cohomology of the total deformation obstruction complex can

be computed via spectral sequence. The differential for C?_, (g) [0] is given by

Q+(5<Eu +2g—2) + {§BCOV 1

0
o1t

To compute its cohomology, we first observe that Q = 9 —td, while 0 is the only operator
which increases the number of dz in g. By considering the filtration on the number of dz,
it allows us to first take the cohomology with respect to 0. By Poincare lemma, this just
simplies g by

H*(g, 0) = Cl[z, 0:]][[t]][-1]
with the L, structure given by —t0d + ¢ (Eu — % +2¢g — 2) + {SBCOV 1. Consider
the following filtration

Fk red (H*(gvé)) [6] C

red

b (H*(g,0)) @ 6CZE~1 (H* (g, D))

and the associated spectral sequence. Here

Cr>e’; ) H red H* ga ) )

n>k

On the graded complex Gr* (C*

red

(H*(g,0)) [6]), the differential is given by

0

005

Lemma 5.7. The E;-term of the spectral sequence is given by
By =H" (Creq (H*(g,0)) [0],do) = Ceq ((C[[2]] © C[[t]]0: & C20) [-1])
Proof. First of all we observe that the map d % is surjective, and the kernel is given by

red (H*(ga )/(Cl : t)

with differential —td. The lemma follows from the simple calculation that

H* (H*(g,0)/C1 - 1,19) = (C[[z]] & C[[f]}0- © Cz0.) [ 1]
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O

Now we consider the differential di on FEq. There are two contributions: the first

one comes from {SPCOV 1 and the second one is induced from §(Eu + 2g — 2). The

{SBCOV Y gives rise to the Lo, product

(5-4) b (+#,20.) = (k+ )24, 1o (5,0.) = k7!

Claim. The operator § is transgressed to the following element in (C[[z]] @ C[[t]]0. ® Czd.)"
on E;

6(20,) = =1, 8(zF) =0, §(t*d,) =0
Proof. In fact, if we let tV be the dual of 1-¢ such that %tv =1, then

60 = —do(tV-®)—(td) (tV @) =—(td)(t') - ® mod imdy

for any ® € C*

red

((C[[z]] & C[[t]]0: & Cz0,) [-1]), and (tD)(t") is precisely the dual of 20,.

This proves the claim. U

We will assign the following rescaling degree, which we call scaling weight, by
(5.5) SW(2F) = k,SW(tF9.) = —1

which naturally induces a grading on Ej by duality.

Lemma 5.8. (E1,d;) is quasi-isomorphic to the complex
red ((Cl[2]] @ C[[t]]0:) [-1])5_y, ® C[0]
where the subscript 2 — 2¢g indicates the scalig weight.
Proof. It follows directly from and the above claim. O

Recall that we have another grading given by the Hodge weight

HW(z*) = -1, HW(t*0,) =k
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It follows that the tangent space and obstruction space for quantization at genus g will

have scaling weight 2 — 2g and Hodge weight 2 — 2g. Let
" = (Cl[]] @ C[t]]9:) [-1]
with the Lo, structure induced from {SBCOV -} as follows

ln (zkl, e ,zk"*,tn72az) = (Z k:l) 22 kel p>2

Then the relevant deformation obstruction complex is

% ( ghol)
red 2-9¢,2-2¢

where the subscript refers to the scaling weight and Hodge weight.

hol

Lemma 5.9. Let H 5,5 o, (gh"l) be the Lie algebra cohomology of g with scaling weight

2 — 2g and Hodge weight 2 — 2g, then

HS g0 0 (") =0 if k<2,9>0

Proof. We will let ey, n;, be the dual of 2*,#9,. Then the Chevalley-Eilenberg complex of

g hol is

cr (ghOl) = Clek, k]

with the differential given by

D:ZDn

n>2

where

Do~ X () (e Tlen) g

7"'7kn aezk171
We consider the spectral sequence with respect to the filtration given by the number of

er’s. The first differential is given by

0
Oeg—1

do = Do = Z knoe,
k>1
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It’s easy to see that the dy cohomology gives the basis of Ey term

El — T}OC[€0777177727 o ] @ @UOG%C[QOa €T, T2, 0 ]
k>0

and the differential d; on Fj is induced by

0
Ds = L —
kzkj( 1+ k2)mer,  Den ro
1,~2
= 22:l<?771€0<31<;668 + Z (k1+k2)7716k16k2%
k>0 k=1 gy k>0 kitkz—1
= QZkélekaj eo — 2m1e1 + Z (k?1+k?2)771€k16k2%
5>0 k-1 ot 2 >0 A

The first term acting on FE; will produce dp-exact terms, hence zero. The other terms

preserves the basis of Fy. Therefore

0
d = —2me;+ Z (k1 + k2)7716k1€k2867
k1,k2>0 k1thz—1
0 0
= —2mer +2) (k+ Dmerers —+ > (a+ ke)men, e, 5——
k>1 k k1,ko>1 k1+ko—1

By taking the filtration on the number of e;’s, we find that the di-cohomology has a basis
given by

E2 = 770@[60,771777% o ] D @7707716%@[607627 5 €k T2, 703, ]
k>0

Note that the scaling weight and Hodge weight for n; and e are given by

SWier) = -k SW(m) =1
HW(er) =1 HW(m) = -k

and the cohomology degree are
deger =0, degnp =1

Elements in 79Cleg, 71,72, - - -| has positive scaling weight, hence doesn’t contribute. For
elements in cohomology degree 2, given by the form nomezf(eo,eg, -+ ,ex), they have

positive Hodge weight, hence also don’t contribute. This proves the lemma. ([
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Remark 5.10. If we consider H];,h (g"°"), where s refers to the scaling weight and h refers to

the hodge weight, then the above proof actually gives more vanishing results
(5.6) HY (6" =0 if k<2,s<0,h<0 or k<2,5=0
This will be used in subsection to prove the Virasoro equations.

Theorem 5.11. If there exists a quantization of BCOV theory on the elliptic curve satis-

fying the dilaton equation, then it’s unique up to homotopy.

Proof. This is equivalent to saying that

H? (2 (Clq (9)) [8][2])5- 50 = 0

where the subscript means the component with Hodge weight 2 — 2g. There’s a spectral
sequence

H'(B,C) ® B/ (Cfeq (9)[6]) — H72 (2 (Crq () [6][2])

red

On the other hand, there’s a spectral sequence converging to H* (C*  (g) []) with Fs-

red
(o (hoz>
( red \9 2-2g,2—2g

which is zero for kK <2, g > 0 by the previous lemma. This proves the theorem. ([l

term given by

5.3. Existence of the quantization. In this section, we show the existence of the quan-

tization of BCOV theory on elliptic curves.

5.3.1. Logarithmic BCOV theory on C. We consider the pair (C,0) where 0 is the origin

of C. Let z be the holomorphic coordinate. Consider the sheaf of vector fields
ToCcTC

which is defined to be the subsheaf of vector fields that vanishes at least for order two at

the origin. We define the space of relative polyvector fields for the pair (C,0) by

PV, = @ PV, =P % (NTC)
2y

i,J
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Let

which defines a trace map

TI'(C,O) : PVTEO) — C

U [C (1F Qo) A Qco)

As in the case of ordinary Calabi-Yau case, the logarithmic volume form ¢ ) induces
a well-defined map
9: PV, =PV
and a d operator

R i,j+1
0: PV(é’O) — PV((&O)

*, %

These operators give PV((C 0) the structure of differential graded Batalin-Vilkovisky algebra
as before.
We can extend the BCOV theory to the pair (C,0), which we call a logarithmic BCOV

theory. The space of fields is
Eicy = PV 1]
and the differential is Q = 0 — t0. The classical action functional

SE" € Owe (i)

is defined by the same formula as in the case of BCOV theory, and it satisfies the classical
master equation. The renormalization group flow equation and quantum master equation

is defined similarly.

Theorem 5.12. There exists a unique quantization of logarithmic BCOV theory for the
pair (C,0).

Proof. The space of fields can be written as

&co) = C*(C) @ Cldz, a][[t]]
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where o = 220,. We first give an explicitly description of d-operator. Since

9(f0) F Qe =0 (fork Qeo) = dem (2) = 2o (21) F Qe

we see that

The space of jets of &c,g) is
J(E(co)) = C= (O, Z']][dz, o] [[t]

where 2/,7’ indicates the jet coordinates. Then J ((50(@’0))[—1] is an Lo, algebra, where
the L, structure is induced by Q + { Sz(%%())V’ —}. The space of local functionals can be

described as
Oloc((c,0)) = we @pe Creq (J(Ec,0))[—1])

where we denotes the right De-module of top differential forms on C, and Ct, ; (J(E(c,))[—1])

is the reduced Chevalley-FEilenberg complex in the category of Dc-modules

red (J(Eco) 1) = ] Symeee ) (J(&c0)Y)
k>0
where
J(&cm)” =Homeo () (J(E(c0)), C(C))
Let

plel — o(C) [ 832 ]

be the holomorphic differential operators on C, where O(C) is the space of holomorphic
functions on C. Let

J(ic0)* = OO, 1]][a] € I (&c0)

Claim. There’s a quasi-isomorphism of complexes

Oloc(8(c,0)) = Dol < red (J (5(c,0))h°l[—1]>> 2]

where QO ; denotes the holomorphic de Rham complex of the D! module C*,, (J(éa(cvo))h‘)l[—l]) ,

and the Lo, structure is given by —td + S(%CO?V.
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Proof of the claim. In fact, we have the quasi-isomorphic embedding of L., Dc-algebras
C®(C) ®o(c) J (€)' [-1] = J (&) [-1]
from which we find the quasi-isomorphism of complexes of D¢-modules

C*(C) ®o(c) (C;fed (J(f(c,O))hOZ[—l]» = Croq (J(Eco))-1])

Therefore the Koszul resolution gives that

Otoc(Eco) = (Q[2] ®cooc) De) @pp Crea (J(E(c0))[—1])
= 022 ®o(c) (Crea (T(Ec0)"' 1))

= Qg (C:ed (J(g(CO))hOl[_l])) 2]

This proves the claim. O

The L., algebra structure of .J (5(@70))h01[—1] is given by Q + {Sé%%?v, —}. Explicitly,
the differential is

Q(f(z 2, t)a) = —t(z + z’)%(z + 2N f(z,7,t)

2
for f(z,2',t) € O(C)[[7,t]], and the non-trivial higher products are

n—2

ln (tklflaatlmféa”' 7tknfn) = <k1 ..k

)+ et i

for f; € O(C)[[2]]-

Since the construction of logarithmic theory is C*-equivariant, it follows from a general
result on the cohomology of equivariant D-module described in the appendix of [CL] that
the de Rham cohomology of the Ly, D@"l—algebra J ((5"(@0))“1[—1] is determined by its fiber
at the origin z = 0. This can be viewed as a homotopy of the theory on C to the theory
near the origin. We refer to [CL] for more detailed proof of this fact.

Let J((g’(c,o))g"l[—l] be the Lo, algebra at z = 0. Then the differential is given by

Q (f(z',t)a) = —tz'%z'f(z’,t)
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It’s easy to see by taking a filtration on the homogeneous degree of 2’ that the Q-cohomology
of J (5(@,0))8’0[[—1] is concentrated on terms without o, hence of pure degree 1. Therefore

the standard spectral sequence associated to this filtration shows that

1 (Cra (6ol 1))

is concentrated at degree 0. Hence

H* (Crea (T(Ec0)"[1]) ) =0, if k #0

Since we have the quasi-isomorphism (Ojoc(&(c,0))) = (D (Crog (J(é"(go))h"l[—l])) 2]),

there’s a spectral sequence
1k j hol i+j—2
H'(C) @ B (Crea (J(E(c0)"[1]) ) = B2 (OraelEic0))

It follows that HF (Oloc(éa((cyo))) = 01if £ > 0. This proves the uniqueness and the existence
of logarithmic BCOV theory for (C,0). O

5.3.2. Ezistence of BCOV theory on the elliptic curve. We consider the case for the elliptic
curve E. The space of fields is & = PV*[[t]], and the deformation obstruction complex is
quasi-isomorphic to

Vg (Crea (J(&)[-1])) 2]
which, by lemma [5.1] is again quasi-isomorphic to the translation invariant deformation
obstruction complex

Q" (Creq (J(&)F[-1])) 2
Theorem 5.13. There exists a quantization of BCOV theory on the elliptic curve & which

satisfies the dilaton axiom.

Proof. The obstruction lies
P (7 (Coa (7(6)P[-11)))
and there’s a spectral sequence

V@R ((J(6)7[-1]) = HH(Q" (Cra (J(6)7-1])))

red
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By lemma the relevant obstruction for quantization at genus ¢ comes only from
H? ((J(6)F[-1])) at Es-term. Let U be a small disk on E, and we consider the defor-

mation obstruction complex for the quantization on U

Q7 (Crea (J(&)|u[-1])) [2]

which, by the same argument in lemma [5.1} is quasi-isomorphic to

rea (J(6)7[-1]) [2]

red

and the obstruction for quantization at genus g lies in H3 ((J (&)F [—1])) By the locality
property of the obstruction class, we know that the obstruction class for quantization on E

restricts to the obstruction class for quantization on U under the natural restriction map

Vg (Crea (J(&)[-1])) [2] = Qp (Creq (J (&) |w[=1])) [2]

Furthermore, the spectral sequence implies that the map on obstructions is injective. Since

the quantization on U coupled to dilaton is unique up to homotopy, which can be proved

by similar arguments as in Theorem [5.11] we only need to construct a qunatization on U.
Consider the exponential map

exp: C — C*

and assume that we have an isomorphism of small disks
exp: U —V

where V doesn’t contain 0. By Theorem[5.12] we can construct a quantization of logarithmic
theory on (C,0). This quantization restricts to a quantization of logarithmic theory on V,
which gives a quantization of the ordinary BCOV theory on U under the pull-back of the

exp map. This proves the existence theorem. O

5.4. Holomorphicity. In this section we prove that we can quantize the BCOV classical
action using local functionals which contain only holomorphic derivatives. Before proving

this, we discuss several properties of Feynman graph integrals for such local functionals.
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5.4.1. Deformed quantum master equation. We consider the BCOV theory on C. Let PV(’{:’*C

be the space of polyvector fields with compact support. Let S = ) h9S, be local func-
920

tionals on PV [[t]] and contains only holomorphic derivatives, where Sy is the classical

BCOV action. Here we mean that each S; has the following form

Sglpn, -+, pn) :/CDl(ul)---Dn(Mn)

where D; € Cg° [%] is a differential operator containing only holomorphic derivatives in z,

and z is the complex coordinate on C. The propagator is given by

L > —\ 2
d _
(5.7) P€L(Zl’21’z2722) = _/ U <2122> €—|z1—zg\/4u

e 4mu 4u
and the regularized BV kernel is

Z1 — 22
4w L2

(58) 8KL(z1, 21, 22, 52) = 67|21722‘/4L (dil R1+1Q d,?g)

with the regularized BV operator defined as before

So satisfies the classical master equation
1
QSo + 5{5(), S()} =0
Lemma 5.14. The limit
(5.9) T[L) = lim Rilog (exp (hapg) exp (S/h))

exists, and defines a family of effective functionals on PVE’*C satisfying renormalization

group flow equation.

Proof. I[L] is given by Feynman graph integrals

. L
(5.10) I[L]_ll_%r thWp(PE,S)
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where P! is the propagator, S are the vertices, Wr is the Feynman integral for the graph T,
and the summation is over all possible connected Feynman graphs. Since S contains only
holomorphic derivatives, the graphs having self-loops don’t contribute since the propagator
on the self-loop will become zero. Theorem [3.30| implies that the above limit exists, hence
I[L] is well-defined. By construction, I[L] satisfies the renormalization group flow equation.

O

We consider the condition for S such that I[L] satisfies the quantum master equation.

Recall that the quantum master equation is equivalent to
(Q+hAp) e/ = Tim (Q + hAy) exp (haPEL) eSIh =
Using the fact that
(Q + hAL) exp (hapg) — exp (haPEL) (Q + hAL)
we get the following equivalent condition for quantum master equation
(5.11) lim exp (hapg) <(QS + %{S, She + hAES> es/h> ~0

Lemma 5.15. Let ® be a smooth function on C* with compact support. Then

k
lim d22’1 /d2228n0Ue(2’12) (H 8""H£(z12)) (13(21,2’2)

e—0 .
=1

k
A(no;nlu e 7nk) 2 n0+1+i§ (nk+2)
B (4m)k /d 22 | O ' ®(21,22)

21=22
where z190 = z1 — 22 and ng, N1, -+ , N are some non-negative integers,

1 z 2 Lo at Z\2 2
- - (= —|z|%/4e L _ Raad Sl —|z|%/4t
Ue(z) 4re (46) ¢ » He(2) /6 47t <4t> c
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The constant A(ng,ny,--- ,ng) is given by
k n;+1
1 1k 1:[1“21
= [ [ L
0 0 =1 k ZO(”JJFQ)
<1 + Z U¢>]
i=1
Proof. Using integration by parts
k
/dQZl/dQZzanoUe(Zlg) (H aniHEL(Zm)) (I)(Zl,ZQ)
i=1
2 k
T T
2 2 b
_ 2z dti—— ) =z =) g ,
/d / / / H 47T6 (zl_[l 4mt; (4ti> c (y+2)
no+1 n;+2
k
1 1 1
2 2
= dt; _
/dy/d / /H * e 1 ko U47th " ko
€ c + Z E - ti € + Z E
i=1 =1
< +Z > no+1+£(m+2)
e =9, T ey +2y)
Consider the rescaling ¢t; — t;e, we get
L/e Lje k 1 k 1 1
2 2
/dy/dz/l /1 T e | i o
=1 1 =1 i+2 1
<1+¢Z1t"> & <1+ thj>
ji
Koy
T ;E —f(ui ;) noHI+ 3 (n+2)
= ¢ =) e, Dy +2,y)
4me
Taking the limit € — 0
0 1 n0+1+l§ (nk+2)
= / / H n+3 k /dzy 0: L ey tay)
47Tt ' (ni+2)

(3

k iZ:O ' -0
1+ 3 tl_) ) =
=1
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k
n;+1
1 du; Zl:ll U; ) no+1+ ij (ni+2)
— / / H — - /d zo | O i=1 D (21, 22)
0 0 ;- Am & (n;j+2)
(1)

O

Corollary 5.16. Given two local functionals Si,S2 on PV(*C’*C having only holomorphic

derivatives, the limit
) 0
lgl% eXp (h(w> Ac(S1,52)
exits as local functional on PV(’('E’*C which has only holomorphic derivatives, and it doesn’t

depend on L.

Definition 5.17. Let 51,53 be two local functionals on PV(*C’Z having only holomorphic
derivatives. We define the deformed BV bracket {S1, S2}" by

) 0
(5.12) {S1,8:} = lg% exp <h8P€L> Ae(S1,52)
Note that the classical BV bracket is given by
(5.13) {51, SQ} = lin% Ae(Sng)
€—

where we have used the fact that A.S; = 0. Therefore the deformed BV bracket can be

viewed as the quantum corrected version of the classical BV bracket in this setting.

Let T be a connected graph without self-loops, V(I") be the set of vertices, E(T") be the
set of edges, V = |V(I')|, E = |E(T")|. We index the set of vertices as in section [3.5| by

v:{1,2,---,V} - V()
and index the set of edges by
e:{0,1,2,--- ,E—1} — E(I)

such that e(0),e(1),--- ,e(k) € E(I') are all the edges connecting v(1),v(V). We also fix

an orientation of the edges such that given e € E(I"), the left endpoint I(e) € V(I') and the
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right endpoint r(e) € V(I') are defined. We consider the following Feynman graph integral
by puting Ue on e(0), puting HGL to all other edges, and puting a smooth function ® on
CVMI with compact support for the vertices. We would like to compute the following limit

of the graph integral

E%H/d%zanozf (H " HE (2 >

where we use the notation that

ze = z; — 24, if l(e) = v(i),r(e) = v(j)

Lemma 5.18. The above limit exists and we have the identity

E-1
2 70 n; 17l )
E%H/d 10" Ue(2e(0)) (Ha H! (ze@)>q>

i=1
k
. An ,n - "°+1+Z: (ni+2) Bl
R e H/d %0, I1 0B (ze) | @
i=k+1
Z1=z2y
The constant A(ng;ny,--- ,ng)is defined as in the previous lemma. The limit on the RHS

ezists due to Theorem [3.30

Proof.

2 E-1|z_ |2

_ no+1\ /E—-1 _ ni+2\ _[ el e)!
1 (Z@\"" ML (o . < R PR XE >¢,
4me \ 4de et 47Tt€(2-) Ate(s)
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We will use the same notations as in the proof of Theorem The incidence matrix
{pv,e}veV(G),eEE(G) is defined by
1 lle)=w
Pve=94-1 r(e)=v
0  otherwise

We assume that the orientation of e(0) is such that

Pu(1),e(0) = L, Po(v),e(0) = —1

The (V — 1) x (V — 1) matrix Mrp(t) is defined by

-1
:vaz e(l)t Pu(j),e(l)> 1<4,7<V -1
=

where we use the convention that ¢y = €. Under the following linear change of variables
zi=yi+tyy 1<i<V -1

RV = Yv

and use integration by parts

\%4

E-1 L
H/d2zi H/ dte(i)
i=1 i=1 "¢

1 /z no+1\ (E-1 5 o\ Mit2 _<Ze§10>'2+Eil 'Zm_'z)
L[ ~e(0) H e(i) e =1 e ) g
dme \ 4de . 4rt At

e(t)

= /deV H /de H/L dt eXp _IVZ_ly.MF(t). i
i 1 i 4,5Y5

7,7=1
V-1 no+1 V-1 Na+2
1 V-1 Z pv(i),e(O)Ml:l(t)Lj 9 E-1|V-1 Z pv(i),e(a)Mr‘l(t)z,] 9
- Z 1=1 v =1 v
dme | A € 0y, ot | 7= te(o) dy;
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Notice that for 0 < a < k, and 1 <7 <V — 1, py() e(a) 18 nonzero only for py1)e@) = 1

Consider the change of variables

te(z’) — Ete(i) 1< < k

te(i)%te(i) k+1<:1<FE-1

we get
V-1 ko Lje dt; LVl
d2 d2 4 - ZA*AM {Z .
/ i }:[1/ y le[l/1 47rte(z 11 / 47rt 4i;1y 7 Mr (D),
V-1 _ no+1 V1 ) Na+2
Vol 2 Pu(iye My (£ E-1 [ V1 X Poiye()yMp (£
1 i=1 9 H Z i=1 9
4me = € 0y ai | = te(a) 0y;
ﬁ /L/E dtoy /L dt o
=171 dr o Z k+1 €
where t’s are define by
Ee(O) =
Ee(i) = Ete(i) if 1 S ) § k
Ee(i):te(i) fk+1<i<FE-1
F(t;e)
v 1 =
— H/dzyzE - exp | =7 Z Yigi Mr(t);
=1 Zl:ll te(i) 3,j=1
V-1 5 o+l V-1 N Na+2
Vo1 X Puye)Mp ()i B[ ver X putye) M ()i
S E 2 Iz e e
4me = € 0y a | = te(a) 0y;

We first show that lin% F(t;€) exists. Using integration by parts, we write F'(¢;€) as
e—

F(t;e)
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v k k _ na+2
1 ‘y1|2 1 1 y1 no+1 Y1 a
2 - | |
| | /d Yi -1 ©xXp ( de - Z t 4me \4de Pyt 467fe(oa)

i=1 H te(z) oa=1 e(a)
=1
Na+2
V-1 E—-1 E-1 Z Po(i),e(8)Yi
1 . Pu(i),e(8)Po(i) e (8)
eXp _Z YiYyj Z P H 4t— (0]
ij=1  B=k+1 e(B) B=k+1 e(P)
14
1
_ 2
= I [ @iz
=1 H tE(Z)
i=1

V-1 Na+2

) . i
( o >n0+1+ S at2) [ 15 g B 20eoten B | 2 Puie)li
a=1 =

= 17 gk te(8) I]: i=r P
o B=k+1

Therefore under the limit € — 0, we get

lim F'(t;€)
e—0
v k Na+2
1 1
=2 H te(i) a=1 e(@) Z (na+2)
i=1 <1 + Z o ))
V-1 na+2
5 \moH+ Y mer2) [ 15 g B Awewrien -1 [ X puties)i
<> a=1 e lidm BeFt1 e(B) H =t P
o1 i1 Ate(p)
y1=0
Claim.
brL/e dty L dt, dto
limH/ / H/ hmFte)
6~>0i:1 1 i—kt1Y€ =k+1

Clearly Eqn (5.14) follows from the claim and Lemma
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To prove the claim, first notice that we have the estimate

0 < Myt (t)1 < 1
- tea - k
" ()

te(i)

for 1 <a<k,1<j<V —1. In fact, by Lemma [3.34

I1 te
CeCut(T;{v(1),v(5) H{v ecC
Mp_l(t)l,j _ CeCut@i{v()v(@)}{vv})

>, It

T€Tree(T) egT

II te

CeCut(T{v(1),0(4)},{vy}) e€C < 1

2. [[t ~ i
TeTree(T) egT % + E !

e; €E(T) for some 0<i<k

V-

1
> Po(i)e(a) M ()i
For0<a<FE-1,1<;<V-1, =

fow) is bounded by a constant by Lemma

[3.33 It follows that

|E'(t; )l

% 1 1 V-1
< H/deiE_l exp | =7 > i Mr (D)
i=1

I te =1
=1
V-1 _ no+1 V1 3 N2
L v > Putiye) M ()i 9 B-1 [Vl X Poiye(a)yMp (£ 5
1 Z =1 0 =1 ~ 0
4me p= € 0y; ozt | 52 te(a) y;
Na+2
v V-1
1 1 _ - 1 1 ~
< H/d2yiE_1 exp | = > i Me ()i Te d
i=1 I te) ij=1
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where ® is some non-negative smooth function on CV with compact support. Integrating
over y;’s we get

Na+2

F(tie)] < Cpm H

Na+2

€te(k)7 t€k+17 T 7t€(E 1))

1 LS|
H tn"‘+2

k
Prlterrs s te(s-1)) 1:[1736( a=1 "e(a)

IN
Q

where C' is a constant that only depends on @, T is the graph obtained by collapsing the
vertices v(1),v(V) and all e(0),e(1),---,e(k), and Pr is defined in Lemma Here we

have used the simple combinatorial fact that

,Pr(eaete(l)f" 76te(k)7t€k+17"' t E 1) (H te(g)) (1+Z ( )) PF ept1y " 7te(E71))
a=1 6 o
Since I' has no self-loops,

L die 1
< 00
H/ tna+3 H / 477 Pr(tersr s te(p-1))

a=1 "e(a) i=k+1

Now the claim follows from dominated convergence theorem. O

Proposition 5.19. Let S be a local functional on PVE’;[[tH with only holomorphic deriva-
tives and 0S = 0. Let {I[L]}1~0 be the effective functional defined by Equation . Then

{I[L]}r>0 satisfies the quantum master equation
1
QIIL] + S{IIL] I[Ll}r + hALI[L] =0
if and only if S satisfies the equation

(5.14) QS + %{S, SY =0



110

where {—, —}' is the deformed BV bracket defined in Definition .

Proof. The quantum master equation is equivalent to

. 1 .
tim exp (102 ) ((Qs + (8.8} + mg) eS/f> _0

where A.S = 0 since S is local and contains only holomorphic derivatives. Since QS =
(—t0)S which also contains only holomorphic derivatives, it follows from Theorem and
Lemma that the equation is equivalent to

lim exp (h@PL> ((QS + }{57 S}'> eS/h) —0
e—0 € 2
or
1 !/
QS + 5{S, SY =0
]

Remark 5.20. Eqn (5.14) can be viewed as quantum corrected equation for the classical
master equation. The classical BV bracket contains single contractions between two local

functionals, and the quantization deforms the BV bracket to include all multi-contractions.

5.4.2. Holomorphicity. Now we prove that we can quantize the BCOV theory on the elliptic

curve using local functionals with only holomorphic derivatives.

Definition 5.21. We say that a functional I € O(&) has anti-holomorphic degree k if
I[ILL17 e nu"fl] - O? JURS PVai’bi[[tH

unless > b; = k.

Theorem 5.22. There exists translation invariant local functional S = > WSy € O1o.(PVE[[t])[[1]
920
such that

(1) So is the BCOV classical action, Sy contains only holomorphic derivatives for all
g >0, and S has anti-holomorphic degree 1.
(2) The following limit exists

FIL] = lim hlog (exp (hdps ) exp (5/h)) € OV )]
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which defines a family of effective actions.
(3) F[L] satisfies renormalization flow equation, quantum master equation, and dilaton

equation.

Proof. Since the theorem is local, we consider the theory on C. We prove by induction on
g that we can quantize the theory by local functionals S, which contains only holomorphic
derivatives and satisfies

0S4 =0
So obviously satisfies the property. Suppose we have quantized the theory using {Sh}n<g
where S}, contains only holomorphic derivatives, has anti-holomorphic degree 1, and 05}, =

0 for h < g. We denote by
g—1
N 1)
h=0

By Theorem [3.30
F[L] = 21_{% hilog (exp (h@PGL) exp (S(<9)/h>>

exists and satisfies quantum master equation modulo #9. The obstruction Og4[L] at genus
g is given by
(Q + hAL) P/ = (R9710,[L] + O(h9)) F1H/N
As before, the limit

0y = lim O[]

exists as a local functional satisfying
ROy + {So, Og} =0

By Proposition [5.19]

(—t8)S(<9) + %{S(@), S(<ay = Ogh? + O(h9*)
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Obviously, 9 ((t9)S<9)) = 0 by induction. We show that £{S(<9), S(<9)}" also lies in
the kernel of 9. In fact,
d{S(<9) gl<ay
~ limd (exp (napeL) GKE(S(<9)S(<9)))
— 1im (exp (s ) (9+ Mk, — hdx, O (SIS )
= —hg, lg% (exp (haPEL) 8K€(5(<9)S(<g))>
= —hog, {89, sy
Since {S(<9), §(<9)} is local and contains only holomorphic derivatives, dx, {S(<9), §(<9)}/=0.

It follows that
004 =0

and O, contains only holomorphic derivatives with anti-holomorphic degree 1. By the

existence of the theory, we can solve the master equation by
Og = QSy + {50, 5}

for some local functional S;. Now we observe that the 0-cohomology of the deformation-
obstruction complex is concentrated at terms without anti-holomorphic derivatives. In fact,

by Lemma the deformation obstruction complex is quasi-isomorphic to
Cdzdz @p (Creq (J(6R)"[-1])) = @ (Clog (J(62)"[-1))) [2]
The operator 0 : &¢ — & induces a differential, on the above complex. Using
H* (J(6r)",0) = C[[z, 0, 1]]
it’s easy to compute the cohomology

H* (Q* (C.q (J(88)F[-1])) [2]) =2 (Cdz[1] ® CdzdZ) @ prot Cpley (C[[2, 85, ]][—1])

A

which corresponds to elements in Cdzdz ®p (C?,,; (J(65)P[—1])) which contains only holo-

red

morphic derivatives with anti-holomorphic degree at most 1.
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Since 509 = 0 and Oy contains only holomorphic derivatives, it follows by considering
a filtration on the number of anti-holomorphic derivatives in S, that we can adjust S, by
adding some @+ {.Sp, — }-exact term such that it contains holomorphic derivatives only and
satisfies 5Sg = 0. Moreover, since O, has anti-holomorphic degree 1, we can choose S, to

have anti-holomorphic degree 1 as well. This proves the theorem. O

5.5. Local renormalization group flow. We consider the BCOV theory on C. Let z be

the linear coordinate on C. Let Ry be the the following rescaling operator on fields
Ry(tha(z,2)dz"0™) = X" tRa(Az, \2)dZ"9O™, X € RT
for tFa(z, 2)dz"o0 € PVE;[[t]]. It induces an action on functionals by
RA(D)[p] = T[Ry-1p4]
for I € (’)(PV(*C”*C[[t]]) and p € PVZEZ[[t]].

Lemma 5.23. If {F[L]}y is a family of effective actions satisfying renormalization group

flow and quantum master equation, then
Fy[L] = A2552 R, (F\’L))

also satisfies the renormalization group flow and quantum master equation.

Proof. Since the propagator takes the form
L _ — 2 L
dt Z1 — %9 oy — 2 ~
PL - _ R |21 —22|? /4t — / dtP
e (wn,w) /6 dnt < At > ‘ o

1 - - 2
po— L (2’1 - 22) oz —22l? /u

where

4u
It follows that

~ ~ 2
(5.15) R\P,=\""P, )2, R\PF= A—QPj/Aé
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The BV kernel is given by

L /e s
OKp(z1,2) = <le2> e 12l (42 91 + 1 ® d2)

CAnL \ 4L
hence
(5.16) R\OKp = AN20K )
Moreover,

Q,R\] =0

The renormalization group equation and quantum master equation for F[L] are equiva-

lent to

(9 2 0\ Ry
RG <3L+h815L>6 =0

, 9 FIL)/h _
OME (Q—i—ha(aKL))e —0

Rescaling L — A2L and applying the operator Ry, we get

RG : <)\‘26 0 ) MRFIEN/ —
8L 8(R)\PL/\2)

8 * 2
ME - . R{F[LA2]/h _
@ <Q * a(RAaKLv)) < 0

Using Equ (5-15) and Eqn (5.16)

RG (8 + /\thz> eRAFILN/h _
oL oPy,

QME <Q + AR > BFINI/N = g

9(0Kr)

Rescaling i — hA2, it becomes

0 0
RG <8L + 8PL> e 0

QME : <Q+h )JA[W"ZZO

0
9(0Ky)

which says that {F)\[L]} satisfies the renormalization group equation and quantum master

equation. O
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Remark 5.24. The above equation defines a flow on the space of the quantization, which is

called local renormalization group flow in [Cos11].

Proposition 5.25. Let S = Y h9S, € Oo.(PVZ[[t]]))[[R]] be the quantized BCOV action,
920
which contains only holomorphic derivatives. Then we can choose S such that S, contains

2g holomorphic derivatives.

Proof. The problem is local and we can work on the BCOV theory on C. The effective
action is given by
F[L] = lin% hlog (exp (hapL> exp (S/ﬁ))
€—> €
By Theorem [3.30

lim F[L] =S
L—0

hence
lim F\[Z] = lim NER2RY FIN2L) = A28 2 R3S
By Lemma AQE%_QRKS also gives a quantization of the classical BCOV action Sp.
It’s easy to check that
AEE 2R Sp = A2R%So = So

which allows us to choose S such that
NSRS = S

or equivalently

R3S, = N8,

which says precisely that S, contains 2g holomorphic derivatives. O

Remark 5.26. The rescaling condition A2h%_2Rf\S = S gives precisely the degree constraint
in the deformation-obstruction complex that comes from the dilaton equation. In fact, it’s
easy to prove that the rescaling F[L] — F\[L] is also compatible with the dilaton equation.
The proposition says that we can construct a quantization of the one-dimensional BCOV

theory that is fixed by the local renormalization group flow.
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5.6. Virasoro equations. We will prove in this section that the quantization F[L] on the
elliptic curve F satisfies additional symmetries, i.e., the Virasoro equations. This can be
viewed as the mirror equations for the Virasoro constraints of Gromov-Witten invariants
on elliptic curves, first discovered by [EHX97], and proved by [OP06b] in general.
We define the following operators E,,, Z,, for m > —1. If m > 0, then
En :PVE[H] — PVE[[H]
tha = " (k+ i), a
it
Zm PV — PV

tha = "R (k+1),,,,dZNa
where (n);, =n(n+1)---(n+m — 1) is the Pochhammer symbol. For m = —1, we have

E_1:PVYH]] — PVY[[H]
th=la k>0
0 k=20
Z- PV - PVE[)

th-ldzhna k>0

0 k=0

Both E,, and Z,, naturally induce the operators acting on O(&), which we denote by

the same symbols.

Definition 5.27. We define the effective Virasoro operators {L,,[L], Dp,[L] }m>—1

(1) If m > 0, then

0
— _ |
Ln[L] (m+1) 1) +FE,
and also
0
DnlL] = —(m+1)! + Zm
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which doesn’t depend on the scale L.
(2) If m = —1, the operators £_;[L] will depend on the scale L. Let Y[L] be the

operator

fOL dud*de "Heo o € PVy"
Y[L][a] =

0 o € tPVE([H]
and Y[L] be the operator
fOL dud*de " (dz Aa) o €PVY
0 a € tPVE([]]

Recall that SPCOV ¢ Sym3(&V) is the local functional given by the order three

component of the classical BCOV action. Then we define £_;[L] by

__9 _ 1.9 ¢poov
L_1[L] a0 +E_1-Y[L]+ h@(l)sg
and D_;[L] by
___ 0 ¥ 1 9 cpoov
D_4[L] B(d%) +Z_-Y[L] + h o)

Note that %S;;BCOV is precisely the Trace map.

Lemma 5.28. The operators { Ly, [L], Dim|L|}m>—1 satisfy the Virasoro relations

[Lm[L], Lo[L]] = (m —n)Lpin[L]
[Lm[L], Dn[L]] = (m —n)DmyalL]
[Dm [L]v D, [LH =0

for all m,n > —1 and for any L.

Proof. This is a straight-forward check. O

Remark 5.29. It should be noted that the above Virasoro relations are only valid for the

one-dimensional case, i.e. for elliptic curves.
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Recall that the dilaton operator is defined by

0 0 0

Lemma 5.30. The operators {Ly[L], Dy|L]}m>—1 are compatible with renormalization

group flow, quantum master equation and the dilaton operator in the following sense

exp (hlr ) Lmlel = Ll exp (53 )

exp (hg2r ) Dmle] = D[L] exp (1537 )
[£mlL],Q +hAL] = [Dm[L], @+ hAL] =0
[Lm[L), D+ 2hG] = [Dp[L], D +205] =0

Proof. This is a straight-forward check. ]

Proposition 5.31. Let F[L] + dG[L] be the quantization of BCOV theory on the elliptic
curve E coupled to dilaton. Then for each m > —1, there exists families of functionals

Kn[L], B[L] € hO(&)[8][[]] satisfying

L[ L] F I/ HGILI/R <Q +hAL+9 (D + %8671)) (;Km[L]eF[L}/h—l—&G[L]/h)

Dm[L]eF[L]/hMG[L]/h - (Q +hAL +6 (D + Qhé?fi)) (;Pm[L]eF[L]/h—i-éG[L}/h)

and the renormalization group flow equation

e}

R ( Km[e]eF[e}/théG[e]/h) = K| L]eFIL/h+3GILI/h

h—9_

o orL ( P eF[E]/h-HSG[e]/h) = P[L] oFILI/h-3GIL]/h
Proof. By the Virasoro relations, we only need to prove the case for £_1[L], L2[L], and
D_1[L].

Given m, we will solve K,,[L] by induction on the power of A. The base case for A’-order

follows from the fact that the classical BCOV action F[0] satisfies

Ln[0]erF = D, [0]erFO = 0, ¥m > -1
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For g > 0, assume we have found
g—1
KifL) =) W KplL]
i=1

satisfying the corresponding renormalization group flow equation up to order h9~!, such
that

Em[L]eF[L]/h-&-éG[L]/ﬁ _ (Q YN <D + 2haah)> <;K;9[L]6F[L}/h+6G[L]/h>

— (Ug[L]hg—l +O(h9)) eF[L]/ﬁ-ﬁ-(SG[L}/h

for some Uy[L]. By the compatibility of £,,[L] with renormalization group flow, Fo[L] +
eUy[L] satisfies the classical renormalization group flow, where € is an odd variable with
€2 = 0. In particular, the limit

}}L% UglL] = Uy

exists as a local functional. On the other hand, by the compatibility of £,,[L] with quantum

master equation and dilaton operator, we have

(Q +hAL+0 (D + 2h§h)> <(U9[L]h9_1 +O(h9)) eF[Ll/WG[LW) =0

The leading term gives
QUy[L] + 6 (D + 29 — 2) Ug[L] + {Fo[L], Ug[L]} |, = 0
Taking the limit L — 0, we find
QUy +6 (D +2g —2) U, + {SPOV . U,} =0

Observe that U, has the same Hodge weight as L,,,[L]F4[L], i.e., 2—2g—m. By Remark
we see that for m=-1,2, U, is a trivial element in the cohomology of Q + ¢ (D + 29 — 2) +

{SBCOV, —}. Hence there exists local functional Vj; such that

Uy = QVy+6(D+2g —2) V, + {SBV v, }
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We can define
KmglL] = Vg[L], K I[L] = K g[L] + W K39[L]

where V,[L] is the effective functional such that Fo[L] + €V [L] satisfies the classical renor-

malization group flow for some odd variable € with €2 = 0. Therefore

Lo [LJeFIE/MOGIL/ _ (Q 4 hAL + 6 (D + 21 %)) (%K%Q [L]eF[L]/h—i-éG[L]/h)

— O(h9)eFILI/m+GIL)/h

as desired. This proves the Proposition for the case of £,,[L]. The proof for the case of
Dyn|L] is similar. O

Corollary 5.32. The quantization F[L] of BCOV theory on the elliptic curve at L = oo

satisfies the following Virasoro equations

(5.17) L [o0]eFlh = D [oc]eF IV =0 on H* (£,Q)

for any m > —1.

Proof. It follows from the previous Proposition that there exists
Kn[L] € RO(&)[[A]] Vm > -1

satisfying certain renormalization group flow equation such that
1
Lo |L)eFH/T = (Q 4+ hAL) <th[L]eF[L]/h>
Taking the limit L — oo, we find

L’m[oo]eF[oth = (QKp[0]) eFlocl/h

which is zero on @-closed elements. The proof for D,,[c0] is similar. O
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6. HIGHER GENUS MIRROR SYMMETRY ON ELLIPTIC CURVES

Mirror symmetry is a duality between symplectic geometry of Calabi-Yau manifolds (A-
model) and complex geometry of the mirror Calabi-Yau manifolds (B-model). In the case
of one-dimensional Calabi-Yau manifolds, i.e. elliptic curves, the mirror map is simple to
describe. Let FE represent an elliptic curve. In the A-model, we have the moduli of (com-

plexified) Kihler class [w] € H?(E,C), which can be parametrized by the (complexified)

0= [
E

In the B-model, we have the moduli of inequivalent complex structures which is identified

symplectic volume

with H/SL(2,7Z). Here H is the upper-half plane, and we represent the elliptic curve E as

C/(Z & Z7) and identify 7 in H under the modular transformation

A B
Ar + B for v € € SL(2,Z)

(6.1) T

The mirror map simply identifies the pair (E, q) with the pair (F,7) via
(62) q — eQTFiT

and mirror symmetry predicts the equivalence between the Gromov-Witten theory of E
in the A-model and certain quantum invariants of F in the B-model. We will show in
this section that the quantum invariants in the B-model are precisely BCOV invariants
constructed from the quantization of the classical BCOV action in the previous section. We
prove that the BCOV invariants can be identified with the generating function of descendant
Gromov-Witten invariants of the mirror elliptic curve, to all genera. This established the
higher genus mirror symmetry on elliptic curves, as originally proposed in [BCOV94]. More

precisely, let
&€ H*(E,C)
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be the class of the Poincare dual of a point. Let ki,--- ,k, be non-negative integers. We

consider the following generating function of descendant Gromov-Witten invariants
n
(6.3) 3¢ <Hm~(®)> Z/ H¢ ev}
a>0 i=1 gd =07 Mon (BT 5

where M, ,(E, d) is the moduli space of stable degree d maps from genus g, n-pointed curves
to E, and ev; is the evaluation map at the ith marked point. It’s proved in [OP06a] that (6.3)

n
is a quasi-modular form in 7 of weight > (k; 4+ 2) under the identification ¢ = exp(27it).
i=1

In the B-model, let FE7[L] = Y thfT [L] be the effective functional on the polyvector
920

fields PV*Ej[[t]] on the elliptic curve E; = C/(Z & Z7) constructed in the previous section.
Since E; is compact, we can take the limit L — co. Since Llim K7=0, the quantum master
—00

equation implies that

(6.4) QFF [x0] =0

which implies that we have well-defined multi-linear maps on the ()-cohomology
Fy[oc] : [ Sym™ (H*(PVE[[], Q) = C

Let w be the linear coordinate on C. We consider the following polyvector fields

i _
(6.5) W= g T(?w A dw

which is normalized such that Tr w = [, (wV dw) A dw = 1. We consider

(6.6) FfT [oo][tFw, - - -, tFrw]

n
We will prove that it is an almost holomorphic modular form of weight > (k; + 2).
i=1
Therefore the following limit makes sense [KZ95]

(6.7) lim FET[ J[tFrw, - -, thew]

T—00

which gives a quasi-modular form with the same weight. The main theorem in this section

is the following



123

Theorem 6.1. For any genus g > 2, n > 0, and non-negative integers k1, - -+ , k,, we have

the identity

(6.8) > ¢ <ﬁ7k (w)> = lim FEroq)[tFw, -, thw]
g,d

d>0 i=1

under the identification q = exp(2miT).

It should be noted that the mysterious 7 — oo limit appears in [BCOV94] to describe the
holomorphic anomaly and the large radius limit behavior of the topological string ampli-
tudes. It’s argued by physics method in [BCOV94] that the quantum invariants constructed
from Kodaira-Spencer gauge theory on Calabi-Yau manifolds can be identified with the
Gromov-Witten invariants of its mirror Calabi-Yau under such limit. In our example of el-
liptic curves, the 7 — oo limit simply intertwines between the almost holomorphic modular
forms and quasi-modular forms. This has also been observed in [ABKO§| in the study of
local mirror symmetry.

In Theorem we only consider the input from H?(E,C) and its descendants, which
is called stationary sector in [OP06a]. In fact, descendant Gromov-Witten invariants with
arbitrary inputs on E can be obtained from the stationary sector via Virasoro equations
proved in [OPO6D]. Since we have proved that the same Virasoro equations hold for BCOV
theory (see Corollary [5.32), it follows from Theorem that mirror symmetry actually
holds for arbitrary inputs.

The rest of this section is devoted to prove Theorem We outline the structure as
follows. In section[6.1] we analyze the BCOV propagator and give several equivalent descrip-
tions that will be used. In section [6.2] we briefly review the Boson-Fermion correspondence
in the theory of lattice vertex algebra. In section [6.3] we use Boson-Fermion correspon-
dence to show that the partition function , computed by Okounkov-Pandharipande in
[OP06a], can be written as Feynman graph integrals with the BCOV propagator. In section
we prove that is an almost holomorphic modular form and analyze the 7 — oo
limit. In section [6.5] we prove Theorem

6.1. BCOV propagator on elliptic curves. Let E. = C/A be the elliptic curve where

AN = Z + Zr, 7 lies in the upper half plane. We will use the following convention for
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coordinates: let w be the linear coordinate on C, so the elliptic curve E; is obtained via

the identification w ~ w4+ 1, w ~ w + 7. We will denote by
(6.9) q=e"m

and also use the C* coordinate

(6.10) z = exp(2miw)

such that z ~ zq on the elliptic curve. We choose the standard flat metric on E., and let
A be the Laplacian. The BCOV propagator is given by the kernel P = feL dud*de A,
which is concentrated on PV%’S component. We normalize the integral such that PL is

represented by
W2 — A 2 2
6.11 PL(wy, wo; S W2 7 AN w2 =P /4u
(6-11) (w1, we; 7, 7) / 47ru < 4u
where wio = w; — wo. Note that it differs from the standard kernel by a factor % This
factor is purely conventional and this choice will be convenient for the later discussion. Let

Es(7) be the second Eisenstain series which is a quasi-modular form of weight 2

QZZ (m + nt)? _1_2421_(1

nEZ meZ

/

where the sign ) indicates that (m,n) run through all m € Z,n € Z with (m,n) # (0,0).

E3(r,7) is the almost holomorphic modular form defined by

3

mlmT

E5(r,7) = Eao(1) —

Note that Ea(7) can be recovered from E3 (7, 7) by taking the limit 7 — oo in the obvious

sense.

Lemma 6.2. Under the limit ¢ — 0, L — oo, we have

_ 1 1 .,
(6.12) PG (w1, we; 7, 7) Z—RP(W—WQST)—EEQ(T,T)
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if wi —wy & A. Here p(w;T) is Weierstrass’s elliptic function

o=zt 3 (e )

AEANAD

Proof. This is a well-known result and we give a proof here. Let’s denote by wis = wy — wo.

—7PE(wy,wo; T, T) = / It

) 2
<w12 — (m+”7)) exp (—|wiz — (m + n7)[/4t)

m,ne’ 4
- [ 2 (P27 exp (s i)
! / 4mn¢0mez<(w”ff”ﬂ)gexp(—mm—<m+m>\2/4t)
i / It £ / <w12_2+n7)>26><p (~luwnz — (y +n7)|2/41)

= I1+Iz+f3

I, is easy to evaluate

I I /oo dt W12 — M 2 ( | |2/4t)
im = — E —— | exp(—|wiz—m

e—0 ! 0 47Tt mel 4t P 12

L—o0
1 * dt 1
= —_ 1/4
gz(wm—mv/o It (atp P

1 1
47 mel (’U}lg - m)2

Let

_ — 2
(W) exp (—|wiz — (y + nr)[2/4¢)
1
N (w12 —y — nT)QG(U), u=t/|wiz — (y +n7)f?

where G(u) = T )2 exp (—1/4u) which is a smooth and bounded function on [0, c0). Then

dF (y) 2 ( 1 1
= G(u) + +
dy (w12 —y —n1)3 (u) (wig —y —n7)3 (w12 —y — n7)2(W12 — y — nT)

) uG' (w)
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It follows that the summation in I is absolutely convergent. Therefore

m-+1 1
lim I, = — - d
0 2 Z Z < (w12 —m — nT)? / y(wlg —y— nT)2>

L—oo n;aéO meZ m

- 722 (w12 —m —nT)2

n#0meZ

To evaluate I3, notice that

/_Z @ <1W>2 exp (—|wiz — (y + n7)[?/4t)

o] 2 I —nlI 2
= / dyy (mqéill;y nimr) exp (—y?/4t — (Imwiz — nImT)?/4t)

—0o0

Va((Imwya — nIm7)%/t — 2) 9
= — VY exp (—(Im w2 — nlm7)?/4t)
L R (—@ — nImr)%/4t)
= a (47Tt)1/2 Xp mwsi2 n T
Therefore
L
. 1 1 )
25\1(1] Is = — l% ZZ <(47Tt)1/2 exp (—(Im w2 — nIm7) /4t)>
L—oo L—oco n# .
L
_ 1 1 )
= — lg% mz (Wexp (—(a—n) /4t)) , a=Imwp/Im7,0<a<1
L—oo n#0 .
Obviously,

lim ((1)1/2 exp (—(a— n)2/4e)> —0

e—0 s 47e
The Poisson summation formula gives
1
Z <(47‘(‘L)1/2 exp (—(a —n)?/AL ) Z exp (—4m*m®L + 2mima)
nez meZ

hence

) 1
nggo?% <(47‘(‘L)1/2 exp (—(a — n)2/4L)>

= nglolo Z exp (—47r2m2L + 2m’ma) =1
meZ
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Adding the three terms together, we find

1

) _ _pL = - -
!gI(l] ( 7'1'P6 (wl,U)Q,T,T)) Z Z w12 _ —n7)2 4Im T
L—o0 nEZ mez
1 |
= gl )

We will use the following notation to represent the 7 — oo limit, which we simply throw
away the term involving ﬁ

P (w1, we;7,00) = Tlggopo (w1, we; T, 7)

1 1
= —ﬁ@(wl —w2;T) — EE2(T)

- 42ZZ 1—w2—m+n7))2

ne” mGZ

or simply Pg°(r,00) if no explicit coordinates are needed. We can also go to the C*-

coordinate z using the formula

Z 1 9 2 )
mezZ m = —Am m, z = exp (2miw)
hence
2122q" .
Pgo(wla w25 T, OO) = § (21 — ZQQ”)Q, Zf = €Xp (27T’ka) 7k = 17 2

nez

If we further assume that wy, we takes values in {a + b7|0 < a,b < 1}, then we have the

following relation

-1

22| <|z1] <l¢™ 22
and we get the power series expression
o ' Az mz"zy " q" mzy "2y q"
(613) PO (UJl,’UJQ,T,OO)— m‘i‘ Z 1_qm + Z 1_qm

m>1 m2>1

Later we will use this formula to give the Feynman diagram interpretation of the Gromov-

Witten invariants on the elliptic curve.
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6.2. Boson-Fermion correspondence. In this section, we discuss some examples of
vertex algebra as well as their representations. We collect the basic results on Boson-

Fermion correspondence that will be used to prove mirror symmetry. For more details, see

[Kac98][MJD00].

6.2.1. Free bosons. The system of free boson is described by the infinite dimensional Lie

algebra with basis {ay, }nez and the commutator relations
(6.14) [, Q] = N0ptmo, MM EZ

The irreducible representations {HIJ,B }per are indexed by the real number p called “mo-

mentum”. For each Hf , there exists an element |p) € Hf , which we call “vacuum”,
satisfying
(6.15) aplp) = plp), anlp) =0, n>0

and the whole Fock space Hf is given by

P —i1 12

HB:linearspanof{akl. ot -~-oz]i"in|p> i1 > 9 > iy > 0, kl,---,knzo,nZO}

We will be interested in the Fock space with zero momentum, where the vacuum vector
is also annihilated by aq

apl0) =0, Vn>0
{a_n}n>0 are called creation operators, and {c, }n>0 are called annihilation operators. We
define the normal ordering ::p by putting all the annilation operators to the right,

apoy, ifn <0
(6.16) DO Qi i B=

amey, ifn>0

and similarly for the case with more «a’s. Here the subscript “B” denotes the bosons in
order to distinguish with the fermionic normal ordering that will be discussed later. It’s

useful to collect a;,’s to form the following field

(6.17) alz) = Z anz "t
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then we have the following relation

an Lyt a(2)a(w) p= (z—lw)2+ ca(z)a(w) g, if 2] > |w]
n>1

This provides a convenient way to organize the data of the operators and the normal
ordering relations. We can construct the Virasoro operators acting on Hf via normal

ordering

1
(618) Ln = 5 Z OGO B

1€EZ
which satisfies the Virasoro algebra with central charge 1

3

m°> —m
Om+n,0, Vn,m € Z

(6.19) [Lim, Ln] = (m — 1) Lyptn + 19

If we consider the corresponding field
(6.20) L(z) =) Lpz "7
then we can write
(6.21) L(z) == :a(2)? B

Ly is called the “energy operator” and has the following expression

1
= ia% + Z QO

n>1

which acts on basis of Hf as

ki K k
Loa™; a2 - _ln|p (p +Z/~zaza) _1“ SRR _zn|p>

The dual space Hf * can be constructed similarly from the dual vacuum element (p| € Hf *

such that

(6.22) (plao = p(p|, (pla—n =0,n>0
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and

Hf* = linear span 0f{<p|ozf:~--ak2 fl i1 >0 > 1y, >0, k1, kp >0,n > 0}

2

The natural pairing
Bx B
H,"®H, - R
is given by

Im l k Im lo L1k k
<p|ajm ' ]2 ]11 ® O[_ZI _2'52 o _Zn ’p> <p|a]m e O[j22aj11a_1i1a_2i2 o _'Ln |p>

and the normalization condition
(pllp) =1

There is a natural identification of the bosonic Fock space of integral momentum with

polynomial algebra C[z, 271, 21, 29, - -] as follows. Let

(o)
x) = exp <Z xnan>
n=1
then

ot a2 o im) =y A1 @ak oF2 ol im) € Clay a2y @, ], mET

—11 —12 i1 _12
leZ
Under this isomorphism the bosonic operators are represented by

Oy, — — NTyp, n>1

9
axn ) —n
and

o) — Z2—

0z

6.2.2. Free Fermions. We consider the free fermionic system that is described by the infinite
dimensional Lie superalgebra with odd basis {b,},{c,}, indexed by n € Z 4 1/2, and the

anti-commutator relations

(6.23) {bn, cm} = Omtn0, {bn,bm} ={cn,cm} =0, Vo,meZ+1/2
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The irreducible representation is given by the Fermionic Fock space HY, which contains

the vacuum |0) satisfying
(6.24) bn|0) = ¢,]0) =0, Vn € Z=° +1/2
and HY is constructed by

HY = linear span of

{b_iy - bjejy - c—5,]0)]0 < ig <idg < -+ <, 0< J1 < jJo2<-- <y 5, >0}
The normal ordering : :r is defined similarly with extra care about the signs

bncm ifn<0
(6.25) S bnCm =

—epmby, ifn>0
where the subscript “F” refers to the fermions. We can also construct the Virasoro operators

acting on HY via

1
(6.26) Ln:§ Z (I —k):bge :p= Z (n/2 —k):bgcp—k :p, NEZL
k+l=n kEZ+1/2

which satisfies the Virasoro algebra with central charge 1
3

m° —m
Omtno Vn,meZ

(6.27) [Lin, Ln] = (m — 1)L yn + 1

Similar to the bosonic case, we can collect the fermionic operators to form the fermionic

fields
(6.28) b(z) = Z bpz 2 o(z) = Z ez /2
ne€Z+1/2 nezZ+1/2

such that the normal ordering relations can be written in the simple form

(6.29) b(z)c(w) = . _1 w—l— 2b(2)e(w) g, if |2 > |w|
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The Virasoro operators can be collected
L(z) = Z Lz "2
and it’s easy to see that
(6.30) L(z) = 3 0b(z)c(z) :p —= : b(2)0c(z) :F
The energy operator Ly has the expression

Lo= Y k(b_gcr+ c_by)
keZ=0+1/2

6.2.3. From fermions to bosons. Consider the above free fermionic system with fields b(z), ¢(z).
We construct the following bosonic field
(6.31) a(z) =:b(2)c(z) :p

In mode expansions,

(6.32) oy = Z tORCr—k i F
kEZ+1/2

It’s easy to see that the following commutator relations hold as operators on HY’
[, O] = M4m0
(6.33) [m; bn] = bingn
[am, cn] = —Cmin

Therefore o(z) defines a free bosonic field. Moreover, the Virasoro operators coincide for

bosons and fermions, i.e.

(6.34) L(z) = = :a(z)? :g= % 1 0b(2)c(z) :p —% :b(2)0c(z) :F

Consider the charge operator ag, which corresponds to bosonic momentum operator

g = Z (b,kck — C,kbk)

keZ=0+1/2
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ag acts on the basis of the Fock space as
aoble “ e b*l‘scf‘jl DY C*Jt|0> = (S _— t) ble DY b*lscfjl “ e c*]t|0>
H” is decomposed into eigenvectors of a

(6.35) H" = (P H],
meZ

such that each Hf; gives a representation of the free bosons. For each Hﬁb, there’s a special

element given by
|0) ifm=0
(636) |m> = b7m+1/2 s b,1/2’0> ifm>0
Cmy1j2 7 Co1/20) i m <O

It’s easy to see that

an|m) =0, ¥Yn € Z7° Ym € Z

Proposition 6.3. The representation Hf; of free bosons is isomorphic to the Fock space

Hfl with momentum m € 7Z under the identification of vacuums

10) ifm=0
‘m> < b—m+1/2 s b_1/2‘0> ifm>0
Cmy1j2 7 Co1210)  if m <0

6.2.4. From bosons to fermions. Let P be the creation operator for momemtum on bosonic
fock space defined by

ePlm) = [m + 1)

It follows that we have the following commutator relation

[ag, P] =1
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We define formally

Qn_n

(6.37) ¢(z) =P +aglogz+ Yy
n#0

where a(z) is related to ¢(z) by
a(z) = 0:¢(z)
Since apl0) = 0, we view «p as annihilation operator and P as creation operator, and

extend the bosonic normal ordering by
(6.38) caoP :g=: Pag :g= Py
Direct calculation shows
¢(2)p(w) = In(z — w)+: ¢(2)d(w) :5, if [w| <|z]

Proposition 6.4. Under the above identification of fermionic Fock space HY with bosonic

Fock space Hfé, the fermionic fields can be represented by bosonic fields acting on
meZ

@ HE as
meZ

(639) b(z) = e(b(z) :B7 C(Z) = €_¢(Z) ‘B

As an example, we can put the product of two fermionic fields into normal ordered form

in two ways. Within fermionic fields

b(z)c(w) = +:0(2)c(w) :p

or using the bosonic representation

b(2)e(w) = e g e 0W) e L o0
Z— W

where in the second equality we have used the Wick’s theorem (see for example [MJDO0]).

Therefore

(6.40) :b(2)e(w) 1p= ! (: e —ew) . g —1)

Z—w
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See [MJDO00] for a more systematic treatment of the above formula.
6.3. Gromov-Witten invariants on elliptic curves.

6.3.1. Stationary Gromov-Witten invariants. Let E be an elliptic curve. The Gromov-

Witten theory on E concerns the moduli space

My n(E,d)

parametrizing connected, genus g, n-pointed stable maps to E of degree d. Let

evi: Myn(E,d) = E
be the morphism defined by evaluation at the ith marked point. Let & denote the Poincaré
dual of the point class, ¢; € H*(M,,(F,d),Q) the first Chern class of the cotangent line
bundle L; on the moduli space M, ,(FE, d). By the Virasoro constraints proved in [OP06D,
the full descendant Gromov-Witten invariants on E are determined by the stationary sector,
ie.,

(6.41) <H Tki@> — / [T ¢fev; @)
L y

[Mon(BD]™ ;5

where [M,(E, d)]vir is the virtual fundamental class of M, ,(E,d). The integral vanishes

unless the dimension constraint
n

(6.42) D ki=2g-2
i=1

is satisfied. Therefore we can omit the subscript g in the bracket ( ). We can also consider
the disconnected theory as in [OP06al], where the domain curve of the stable map is al-
lowed to have disconnected components. The bracket ( )% will be used for the disconnected
Gromov-Witten invariants. It’s proved in [OP06a] that the stationary Gromov-Witten in-

variants can be computed through fermionic vertex algebra, which we now describe.
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Let HY be the Fock space of free fermionic algebra with fermionic fields b(z), c(z), HY is

the subspace annihilated by the charge operator ag. Consider the following operator

1
(N2 — M2z

(6.43)  E(z0) =) Ea(N)z " = b(eM2)e(e M 2) iy +
nez

In components, we can formally write
PV ) 1 e
2: (& .b_ka.'+Eg;51;:XES ifn=0
kEZ+%

> by, e k=n/2) ifn#0
kEZ+3

(6.44) &,(\) = j{dzzné’(z; A) =

Here § = 5= [, where C is a circle surrounding the origin. Decomposing in terms of

powers of A, we define

(6.45) E(zA) = > AEM(2)

n>—1
Consider the following n-point partition function for the stationary GW invariants of the
elliptic curve F:

dis

(6.46) Fp(A1, 5 Anjq) = qu <H Z /\?Tk(@) >

d>0 i=1 \k>—2 J

The bracket is the disconnected descendant GW invariants.

Proposition 6.5 ([OP06al). The above partition function can be written as a trace on the
fermionic Fock space
dis

(6.47) qu <H Z Mo (@) > = Trgr ¢ H Al j{dzg(z; i)
i=1""

d>0 i=1 \k>-—2 J

where we use the convention as in [OP06al

To(w)=1, 7_1(0)=0
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In J[OPO6al, the fermionic Fock space is represented by the infinite wedge space ATV,

where V' is a linear space with basis k£ indexed by the half-integers:

v= ck

keZ+1

For reader’s convenience, the notations used in [OP06a] are related to our notations here
via

Y = b, Vi —cx, C—ag, H— L

6.3.2. Bosonization. Using fermion-boson correspondence, we can have a bosonic descrip-
tion of the Gromov-Witten invariants on the elliptic curve. Following the bosonization

rule

oy

b(z) = ?®) 15, c(z) = e %) 5, where ¢(2) = P + aglog z + Z

—Z
n
n#0

where P is the creation operator for momentum. Using Eqn (/6.40), we can write £(z; \) in

terms of bosonic fields

1 N2\ 4(0—N\/2
) — . ,9(eM7z)—g(e z) .
8(27/\)7(6/\/2—6_/\/2)2'.6 ( )—a( )-B

Let S(t) be the function

et/ — e=t/2 _sinh(¢/2)
t )2

S(t) =

Then

E(z;N) = )\Sél)\)z cexp (S(Az20;)(A\za(2))) :B, «a(z) = 0.6(2)

The following lemma on the interpretation of the factor ﬁ will be used later in the

Feynman diagram representation of the descendant Gromov-Witten invariants.

Lemma 6.6.

1 A2 1 1 1 1
SO (mml“) S <27ri)\8w2> 2. (27m0)2 (w1 — wa + )2

n€Z\{0} S
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Proof. Since S(t) is an even function of ¢, we have

A2 < 1 ) < 1 > 1 1
I P Nl Y > — -
2 2mi 2mi nezi(o} (2mi)? (wy — w2 +n)

w1=w2
1
_ 2 . 2
n= w=0

B ZQ(A/zm')% ( d )2’“‘2 3 1
= S Bl VAR —

= (2k)! ow = (w+n) .

(\/2mi)%k 1

- Z k Z n2k

k>1 n>1
B k

n>1k>1

)\2
= - In|(l+———
(1 )
On the other hand, from the formula % =1l (1 — né‘—;), we see that
sinh A/2 22
S(A\) = = 1+ 55—
N == }1 < * n2(27r)2>
this proves the lemma. O

6.3.3. Feynman Diagram Representation. Let w be the C coordinate where the elliptic
curve is defined via the equivalence: w ~ w+1 ~ w4+ 7. We identify z with the coordinate
on C*, such that
z = exp(2miw)
Consider the following bosonic lagrangian on PV%’? coming from the above bosonization
(6.48) > NLE (u(w)) = ! exp (S iaw Ap(w)) ), k>-1
e A 2mi T

where on the right hand side, we can expand the lagrangian in terms of powers of A, which

defines £*). Let C be a representative of the homology class of the circle [0,1] on the
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(k)

elliptic curve. Let I’ be the functional on PV%’? given by

k 0,0
180 = [ dwt ), we PV
Proposition 6.7. The stationary GW invariants can be represented by Feynman integrals

~ di
d; g (ITieq 7 (W)>dw
= = lim lim W% (PL [é]?‘*‘l)’ o 7Igin—f—l)>

di
S

where the C;’s are representatives of the homology class of the cycle [0,1] and are chosen
to be disjoint. W% is given by the weighted summation of all Feynman diagrams (possibly
disconnected) with n vertices Igj1+1), . ,Iginﬂ) and the propagator PL which is the BCOV

propagator. The normalization factor on the LHS is

Zq dzs _

d>0

1

(1-4")

—18

=1

Proof. We will use w’s for coordinates on C and z’s for coordinates on C*. We use the

conventions that are used in section The BCOV propagator can be written as

_ N 2

W1y — A ITNT

PL(wl,wg,T T)=—— 2 2 elwa=Al /4“, where w9 = w] — wy
47Tu 4u

and under the limit € — 0, L — 00, T — 00,

—m
P (w1, W 7, 00) = z129q™ _ 2129 n mz1 z2 + mzy 2y g™
0 AT T B Z (21 — 22¢™)2 (21 — 22)? Z Z L—qm
meEZ m>1 m>1

where z; = exp(2miw;) and |g| < |z;| < 1 for i =1,2. Let {C;}1<i<pn be disjoint cycles lying
in the annulus {z € C*||q| < |z| < 1} and representing the generator of the fundamental
group of C* | such that C; lies entirely outside C;11 for 1 < i < n. By Proposition and
the boson-fermion correspondence

dis

zqd<n S M@ >
d>0 =1 k>—2 d

ol dz 1
= Trys glo 1_[1 )\722 fc <500 cexp (S(Niz0,)(Niza(2))) :B
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Haiﬁ) H)\lf% ?8(1)\%) exp (S(Niz0:)(Niza(2))) B (E akii> O>

Using Wick’s Theorem (see for example [MJDO0Q]), we can put the expression in the

bracket into the normal ordered form, and the above summation can be expressed in terms

of Feynman diagrams as follows. From the normal ordering relations

z122
z1a(z1)za(ze) = 172—1— s z1a(z1)z00(22) By |21] > |22]
(21 = 22)
apza(z) = n"+:apza(z):p n>0
za(z)a—y, = nz "+:za(z)a,:p n>0
ap—_y = N+ :opo_p:g n>0

we see that there’re two types of vertices for the Feynman diagrams.

(1) The Type I vertices are given by
exp (S(Xiz0;) (Niza(z)))

for each \;,1 < i < n, where za(z) is viewed as input.
(2) The Type II are vertices of valency two for each m > 0, with two inputs u,, a_m,

and weight %m, i.e., vertices of the form

qm
—QmQ_y, Mm >0
m

The propagators also have three types.

(1) The Type A propagators connect zya(z1) and zoa(z2) at two different vertices of

the first type and gives the value

Z1%9
(21 — 22)?
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(2) The Type B propagators connects za(z) from the vertices of the first type and oy,

from the vertices of the second type, which gives the value
im|z™, m € Z\{0}

(3) The Type C propagaotrs connect ay,, @—p, from two different vertices of the second
type, which gives the value

|m|

Since the vertex of Type II has valency two, we can insert any number of vertices of Type II
into the propagator of Type A using propagator of Type C. This is equivalent to considering
only vertices of Type I from exp (S(\;20.)(Aza(z))) but with propagators
2122 mz{"z5 "' q" mzy "2y "
6.50 —— —_— —_—
(6.50) 2 2.

(21 = 22)? m>1 —q” m>1 —q"

connecting z1a(z1) and zea(22) at two different vertices, and

mqm 2"z " mq™zy "2y
(6'51) Z 1—qm + Z 1—qgm
m>1 m>1
21=22
for propagator connecting two za(z)’s at the same vertex.
Now we compare it with the Feynman integral

Y lim lim W (Pf;A’fiI(C’ji“),... Men Igml))

T—00 e—0 n
k?i 2—2 L—oco

The vertices Ig?Jrl)[u(w)] are precisely the same by construction via the identification of

fields
n(w) = za(2)

The propagator connecting two different vertices Igc1 ) and Igj it for #£jis

—m —m
2122 +Z mz"zy g™ Z mzy 2y q"

2 _am _am
m>1 1 q m>1 1 q

. . L . C =) —
%lggo ll—rf(l) P€ (wl w2 T T) (21 - ZQ)
L—o0
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by Eqn (6.13]), where z; = exp(2miw;),i = 1,2. This is precisely (6.50)). To consider the

self-loop contributions, note that the regularized BCOV propagator is given by the sum

PL (w1, wo; T,T)

- - W12 — A o1z =212 /4u
TR
— — 2 L _ _ I\ 2
_ _/ du w1 — w2 e_lwl_w2/4u _ 1/ di Z w1 — wy — )\ 6_|w1_w2_)\|2/4u
T J. dru 4du T J. 4mu 4du

AET, A0

ki+1)

Since the vertices I(Cl contains only holomorphic derivatives, the first term doesn’t con-

tribute to the self-loops, while the second is smooth around the diagonal w; = wy. By Eqn

6.13]), under the limit lim lim , the propagator for the self-loop is equivalent to
=}

1 1
D Dl e LR e D DI Dl e ;
4 mezZN {0} (w1 w2 nGZ\{O} mGZ w1 w2 m + TLT))
B 1 1 mqm" 2"z " mq™zy "2y
o ) Z (wl—wz—m)2+ Z 1—qgm +Z 1—qgm
meZ\{0} m>1 m>1

which differs from (6.51)) by the first term. By Lemma the first term contributes

precisely the factor ﬁ in (6.49). This proves the theorem. [l

Remark 6.8. If all k;’s are taken to be 1, then it reduces to Dijkgraaf’s theorem in [Dij95],
where the RHS are given by cubic Feynman diagrams. Dijkgraaf proves that the corre-
sponding cubic Feynman integrals compute certain Hurwitz numbers on the elliptic curve,
which can be identified with the stationary descendant Gromov-Witten invariants with

input 71(w) under the Hurwitz/Gromov-Witten correspondence [OP06a].

We can further decompose the lagrangian by the number of derivatives

= LPw

920
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where L_S]k)(u) contains 2g derivatives. Let [ (Ck;l be the functional on PV%S taking value in

C[[A]] that is given by

Zhg/ dwl{P (p(w)), pe PV

g>0

where C' is a cycle representing the class [0, 1] as before.

Corollary 6.9. With the same notations as in Proposition[6.7, we have

DI | | L N (7)) )
(6.52) h 2ad>09 b d_ Jim  lim <exp( 3PL) Hil‘l gj%) [0]

qu < >d13 T—00 e—0

L—oo

where on the right hand side, it’s understood that the external inputs are zero.

Proof. Proposition can be rewritten as

2

dis
Zqu< > A TR (@ )>
d>0 g>0 ki>—

=M \:\::]:

g,d
A
(6.53) = lim lim ex 0 H Z )\k I(k
' T 8% ehp P 0PL
L—o0 k >—1

The theorem follows easily from Eqn (6.48]) and the rescaling of Eqn (6.53]) under

6.4. T — oo limit. Kodaira-Spencer gauge theory is known to be the closed string field
theory of B-twisted topological string. It’s argued in [BCOV94] by string theory technique
that the B-twisted topological string amplitude would have a meaningful ¢ — oo limit
around the large complex limit of the Calabi-Yau manifold. Here ¢ is certain coordinates
on the moduli space of complex structures. We will investigate the meaning of 7 — oo for

the elliptic curve example in this section.
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6.4.1. T — oo ltmit. Let w = ﬁ@w Adw € PV}E&, which is normalized such that
Tr w=1

Let FEr = 37 thgET [L] be the family of effective action constructed from quantizing
920

the BCOV theory on E.. Since E; is compact, we have the well-defined limit

FFrloo] = lim F)7[L]

Looo I

We are interested in the following correlation functions

E- k kn
FE oo (0w, -, thna)]
for some non-negative integers ki, - - - , k, satisfying the Hodge weight condition
n
> ki=2g-2
i=1

Let H = {7 € C|Im7 > 0} be the complex upper half-plane. The group SL(2.Z) acts
on H by

f 4 B SL(2,Z
crep el ) S THEE)

T =T =
Recall that an almost holomorphic modular form [KZ95] of weight k on SL(2,Z) is a
function
f :H—C
which grows at most polynomially in 1/Im(7) as Im(7) — 0 and satisfies the transformation

property

. A B
f(y7) = (CT + D)k f(1) for all v € € SL(2,7)
C D

and has the form "
F@7) =" fm(r)Im(r)™
m=0

for some integer M > 0, where the functions f,,(7)’s are holomorphic in 7. The following

limit makes sense

lim f(r,7) = fo(r)

T—00
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which gives the isomorphism between the rings of almost holomorphic modular forms and

quasi-modular forms described in [KZ95].

Lemma 6.10. Let I' be a connected oriented graph, V(') be the set of vertices, E(I') be
the set of edges, and l,r : E — V be the maps which give each edge the associated left and

right vertices. Let ij{ne}(PeL) be the graph integral

d*w
Ly _ v Ne L . =
(654) WF:{TL@}(PE) - | | /E | El awl(e)Pe (wl(e)7wr(e)»7_> 7-)
T S

ImTr
veV e

where n.’s are non-negative integers that associates to each e € E, and PL is the regularized

BCOV propagator on the elliptic curve E.. Then lin% Wp’{ne}(PeL) erists as an almost
c—

L—oo
holomorphic modular form of weight 2|E| 4+ > ne.
ecE

A B
Proof. Given ~ € € SL(2,Z), the propagator has the transformation property
C D

T 2 —
Orpy Pf’(wl, wo; y7,y7) = (C1 4+ D)™ T2 <3$15€TI5||2€L> ((Ct + D)wy, (CT + D)wa; 7, 7T)

dwAdw

T is invariant under the transformation

Since

AT+ B
- ———w— (Ct+D
cr+p" (C7+ Djw
We conclude that lin% Wp,{ne}(PEL) has the same transformation property as a modular
€—

L—oo
form of weight

2B+ ) ne

eckE

1

mm— by induction

Now we show that lir% Wn{ne}(PeL) has polynomial dependence on
e—

L—o0
on the number of edges. First we observe that each self-loop contributes

. n L . —
15% <<9MIPE (w1, wa; T, T)|w1:w2>
L—oo

which is an almost holomorphic modular form of weight n + 2. Therefore we can assume
that I' has no self-loops. Consider the following change of variable

(i 4 T)uy + (1 — 7))ty
21

Wy =
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and
WF {ne} H / uv H ane (e)s Wr(e)> T T)
vev(r) Y 017 ecE(T)

We can compute the derivative with respect to 7

9 L
7=V (e (P2)
0 0
= d?u, (071116_ + _> " PL(wy ey, Wy(e); T, T
el;I(r) /[07”2 eE%F) S CI o)

H " P£ (wl(e’) y Wr(er); Ty 77_)

e’eE()—{e}
d*w, Imw, 0 0\ snepl o
- H / ( Im 7 8U_)Z(e) + 67_'> 9 Pe (wl(e))wr(e)7 T, T)
veV (T

H " Pf (wl(e’) y Wr(er)s Ty 7_—)
e'eE(T")—{e}

where we = wy(e) — Wy(e)- It’s easy to compute that

<Imwe 0 0

Im7 0wy 07'> O" P (w Wife), Wr(e); T>T)

t=L
1 Im(we — A) 1 N
6.55 S —\Te 7 ne+1,—|we—X|?/4t
( ) 4m Im7r 4wt 1 e
A t=¢
%Wry{ne}(Pg) has two types of contributions corresponding to t = L or t = € in the above

formula.

Let’s first consider the term with ¢ = L in (6.55). If n. > 0, then the summation

> Im(pr A) 1 8”5“6 lwe=A[2/4t i absolutely convergent, and we have
mT 4t

) Im(we —A) 1 _
1 Gretle |lwe—A|2/4L __ -0
e S Im7T  4nL v

If n. = 0, then

Z Im(we — )\) 1 8 e*‘we*/\|2/4L
Imr AL e

A
B Tm w, We — (R +MT)\ o (nfmr)[2/AL

meZ nez
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B Tm w, We = (N+MT)\ . (ntmr)2/4L
= Z(ImT m>z<< 167 L2 )6

meZ nez

ntl We — (y + m7) 2
_ Ze T\ T o—lwe—(y+mT)|? /4L
[t ) )

Im w, o0 We — (Y +MT)\  _jwo—(y+mr)[2/AL
+ Z ( ImT m)/ dy( 16w L2 >6

meZ oo

= L+

Similarly we have Llim I; = 0. Iy can be computed using Gaussian integral and we get
— 00

Im we i(Imwe —mINT)\  _ 1mw.—m Im )2
I, — _ (Imwe—m Im )% /4L
2= ) ( Im7 m) ( 8y/m L3/ >€

meZ

It follows that

Im we

2
. . Cl Tm T+ _m) _ Imweim 2/4L
lim IQ = lim (Im 7_)2 Z L3/2 e ( Im T )

L—oo L—oo

_ 1 E Z (1 — 8m2n? 6—4m27r2L+27rimI;';n“f
L—)oo mT

Co
(Im 7)?

where C7, Cy are two constants and in the second step we have used Fourier transformation.

Therefore

0 ne > 0

lim Zlm(we+)\) 1 gttt A/AL _

L— ImT AL
> A Cm Ne = 0

for some constant C.

Next we consider the term with ¢ = € in ( , which contributes to %Wn{ne}(Pf ) as

1 d Wy )
T dr(Im)? Z H / / d wye)
veV(I)—l(e)

ecE(T)

Im(we) yo a”ZJFl —|we|? /4e H 8ne/P£ (wl(e/), Wy(e)s T, f)
e ' €E()—{e}
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By Proposition [5.18} it reduces to certain graph integral hH(l) Wr (o }(PEL) under the limit
€e— €
L—oo

m, where I" is obtained from I' by collapsing

e — 0,L — oo with an extra factor —

the edges connecting I(e) and r(e).

Combining the above two terms, it follows by induction that

K
51 Ly 1 . 1
0> Llljné WF,{ne}(Pe ) = (Im 7)2 ; £il7) (ImT)?

for some functions f;(7) holomorphic in 7 and some non-negative integer K. Therefore

Wpy{ne}(PeL ) has polynomial dependence on ﬁ as well. ([

Proposition 6.11. FQET [oo] [tF1w, - - -, thrw], which is viewed as a function on T € H, is an

almost holomorphic modular form of weight 2g — 2 + 2n.

Proof. Fff [o0][tF1w, - -+, tFrw] is given by Feynman diagram integrals of the type in the
previous Lemma We conclude that FF7[oo][tMw, - -, tFrw] is an almost holomorphic

modular form of weight

2|E| + N

where F is the number of propagators, N is the total number of holomorphic derivatives
appearing in the local functionals for the vertices. By Proposition and the Hodge

weight condition, this precisely equals

n

S (ki+2)=29-2+2n
=1

It follows that the following limit makes sense

i Er Kl oo thn
flgroloFg [oo][t™ w, -+ W]

which is a quasi-modular form of weight 2g — 2 + 2n.

6.4.2. Cohomological localization. Let A (resp.B) denote the homology class of the segment

[0, 1] (resp.[0, 7]) on the elliptic curve E.. Let acs (resp.ap) be the 1-form representing the
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corresponding Poincare dual. As cohomology class, we have

mrT 2Im T

[wF dw] = [21_Z dw] = [ ! (Taqa — ap)
Consider the isomorphism of complexes
o (PVEOtPVE,Q) = (A™,d)
at+tf — (a+p)Fdw
where A** is the space of smooth differential forms on E,. Let
wa=dYay), wp=>"(ap)

It follows that there exists 8 € PVY* @t PV®* such that

1

= 2ImT(%wA —wg) + QB

Let Ay, -+, A, (resp.By,- -, By) be disjoint cycles on E; which lie in the same homology

class of A (resp.B). The quantum master equation at L = oo says
(6.56) QFy[o0] =0

which implies that

_ (P
Fyloo][t10, -+, t57] = Fy oot o= (rwa, —wp,), 19 o= (rw, — wp, )]
Under the limit 7 — oo, we have
(6.57) lim F,[oo])[tFlw, - tFrw] = lim F,[o0][tMwa,, -+, t"wa,]

T—00 T—00

Since the supports of wy,’s are disjoint, and the propagator is concentrated at PV%’S, the

RHS can be represented as Feynman graph integrals
lim Zhg_ng[oo] [tFwa,, - t*wa, ]

T—00
920
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1 1
(6.58) g Wr (ﬁ 0°(1; 00); " /Al dwJ\"V, N dwJ

I:connected graph
[V([)|=n

where we sum over all connected Feynman graph integrals with n vertices, with propagator

hP§°(1;00), and the ith vertex given by %fA_ dwJ®). Here 7*) = 3 hgjg(k), and jg(k)
' 9>0
is a lagrangian on PV%’S which contains 2¢g holomorphic derivatives by Proposition

We will use « to represent a general element in PV%S, and write

a\"
(n) _ il 0 =
(6.59) « (\/ﬁaw> a, oV =«

J®(a) can be naturally viewed as an element in Cla, 1), ---]/Im D, where

_ (i+1)
D = ; o ENG)

represents the operator of total derivative. The initial condition is determined by the

classical BCOV action, which says

If we assign the following degree
deg al™ =n+1
then the Hodge weight condition implies
deg J®) = (k +2)

In particular, the above degree constraint tells us that

70 %az
and
1
m_13
I =g

where the other possible terms don’t contribute since they are in the image of D.
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6.4.3. Theory on C* and commutativity property. We explore the properties of J®*) by
considering the BCOV theory on C*. Let F[L] be the quantization of the BCOV action.

We will use z to denote the coordinate on C*
z = exp(2miw)

where w is the coordinate on C. The holomorphic volume form is dz—z which defines the trace
operator on polyvector fields. We will use O¢x to denote the space of holomorphic functions
on C*. Let C, be the circle {z € C*||z| = r},r > 0. We associate C, a non-negative smooth
function pc,, which takes constant value outside a small neighborhood of C,, such that
pc, = 1 when |z| > r and pc, = 0 when |z| < r. Note that dpc, is the generator of
H}(C*), with

dz

d(pc) A
L dee) A s

=1

and dpc, represents the Poincare dual of C,. Let wc, be the following polyvector field
we, = Q(pc, 20,) € PVE! @t PVE

and consider

(kika) (71 _ —FlLl/n_ O 9 FIL}/h
L] =
O e = e, ) 0w,

CT‘I 707"2

where 71 7 72 such that the supports of dpc,, and dpc,, are disjoint.

Lemma 6.12. The effective action F[L] +5O(C]i11’%22 [L] satisfies renormalization group flow

equation and quantum master equation, where § is an odd variable with 6% = 0.

Proof.

(kik2) rp1 FILI/h 9 9 FL)/R
OCrl ,Cry [ ]6 8(tk1 we,, ) a(tk2 we,, ) €

) 0 0 Pl /h
a(tklwcrl ) 3(tk2wCT2 )

ehaPeL 0(61211,716222 [e]eF[e]/h
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which proves the renormalization group flow equation. Since Q(tklwcrl) = Q(thwcTQ) =0,

0 0
AA ) OFLR2) 1 FIL/A N F[L]/h
(Q+hAr)0g, ¢, [Lle (Q+ 1AL G, ) oFwcs,)
0 0
_ AA F[L]/h
0tFrac,) Dtac,,) (O T IAL¢
=0
which proves the quantum master equation. O
We will consider the restriction of (’)(Ck’; 11’%22 [L] as a functional on O¢+ C PV%? in the

following discussion, and we still denoted it by Ogi 11’%22 [L]. Since we,, ,wc,, have compact

support, we can take L — oo to obtain (’)gi 11’%22 [co] as a functional on Oc«. Note that
elements in O¢- lie in the kernel of Q = 0 + td. Quantum master equation implies that
O(Cl‘i 11’%22 [0o] only depends on the homology class of C,,,C,, and the integers ki, ko if we

restrict on Oc«. Following the convention as in Eqn (6.58]), we have the following

Lemma 6.13. Restricting on Ocx, then

(6.60) O%42) (o] = exp (hpge) ( / Az 2w) / dz j(k2)>
1L c p

| 2Tz , 212

where PL is the regularized BCOV propagator on C*

1 (E at w1 — W +n\> _, >
pf(zl,m):_ﬂ/ mz(@ et —watnf? /4t
€ nez

and

1 Z129

1
(27i)? nEE:Z (w1 —we —n)? (21 — 22)?

Pg°(21,22) = lim PL(21,29) =
L—oco

here zj = exp(2miwg), k =1, 2.

Since O(c]‘i 11’%22 [oo] only depends on the homology class of C;, Cy,, we have

d d
exp (hdpg) / P / 5" | =0
Crl X740 CT270T3 29

where 0 < r3 < r; < ry. We call this the commutativity property.
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Lemma 6.14. 7®) s are uniquely determined (up to total derivative) by the initial condi-

tions J*) () = (kiQ)!ak“ + O(h),a € O¢+ and the above commutativity property.

Proof. If the propagator connects one o™ from J®*(a) and one o™ from J*2)(a), it

replaces the two terms by

h (\/ﬁzl(‘?zl)n (\/ﬁ@a@)m LQQ _ (_1)m+1 <\/ﬁ2’13z1)n+m+1 ( Vhzy >

(2’1 — ZQ) Z1 — %9

Using residue we see that

exp (hdps) ( / defl g / zdzf?J“@))
o) Tz CQ—Cé TLZ9

gives rise to local functional [ > T where I(a) € Cla, oV, - ][Vh, vV~ ] Let
n ( hz
U(n) (Zlv 252) = — <\/ﬁ21azl) <Zl — 52
We claim that
d®ym) = k) () VR
(n+m+1)! ’

where f is a polynomial which is linear in u(*)’s. This can be proved by induction on n.

For n =0,

21— 22 21— 22

LOm) _ V2 (\/ﬁzlazl)m ( Vhe, )

We use power series to represent
m+1 21 K
= Vh k™
> ()
then

B (2] e )

k=0 j=0

where P(k) is a polynomial in k& with the highest degree term given by +1km+1. This

proves the case for n = 0. The induction follows easily from the formula

4™y (m) _ (\/gzlan) (um—l)u(m)) (D) g (mt 1)
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This proves the claim.

It follows from the claim that I € vVAC[a, V), ---][v/h]. We consider the leading vA
term in exp (hdpg) (fC1 dz| J(’“l)fcrcé dzp j(l)), where JW(a) = La3. If there’s

2wz 27129

only one propagator, it replaces each term a® in gk by

1/0 dzy <\/ﬁ2’18z1>n+1 ( Vhzy a(Z2)2> — \/ﬁ<\/ﬁ21821>n+1 <;a(21)2>

2 . 229 21 — 22

where C, is a small loop around z;. If there’re two propagators, then it replaces each pair

n+1 h m+1 h
/ 2dz,2 (Vhz1o.,) < ‘[_"’2 ) (Vhzo.,) < f_Z? >a(zQ)
., 2miz 21 — 29 z21 — 29

| | n+m+3
_ / dzp (n+1)!(m+1)! (\/ﬁzlﬁzl) . ( Vhz )a(22)+higher order inv/h
C

., 2mizy (n+m+ 3)! 21 — 29

Therefore we find that the leading v/A term in exp (hPS®) (fcl dz1_ 7 (k1) fCQ—Cé ﬂj(l))

2mizy 2mizo
| gt
cy 2mizy

poly G0 w00 § DD iy D0

W () ] A
2 4z, I 9a+=D T Lt (k414 3)! 9 da®

is given by

where F is the operator

By the commutative property, E7*1T1(a) is a total derivative, i.e., lies in the image of

D. The uniqueness now follows from the lemma below. U

Lemma 6.15. Consider the graded ring A = C[a\9), o), ...]/im D with grading given by
dega®™ =k +1

where D 1is the operator of degree 1

p=%" g9

= Ham)
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Let E be the operator of degree 2 acting on A

Ll D gy D (kDD gy 00
E=52 g e aa<k+ll>+g>:0 (k+i+3)1 ° 9 9o

k,1>0

)

There there exists unique J*) € A of degree k + 1 such that

EF®) =0
Proof. Let E = E1 + E5 where
1 (k+D! 4y 0
B, = - a®e®___ 7
JAl k+1-1)"
2 o k1! Oalk+i=1)
B, — (k+ D1+ 1)!a(k+l+3) o 0
sy (BHi+3)! dak) §al)

It’s easy to check that
[D,Eq1] =[D,Es) =0

We write By = E} + Da?) where

L Dy oy O (1)
Er= 2]; TR WY i
J1>0

We can choose a basis of A = (C[a(o), a(l), o]

{aa(®@) .. (o))2) 0 <i) <ig<--- <y

then F’ acts on the above basis in the obvious way, while for the action of Eo, we need to

transform the result of the action to the above basis using the operator D.

Claim ker E] = Span{ (Oé(o))k}kZO-

To prove the claim, we consider the filtration by the numbers of a(!)

FPA = (a(l))p A,
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then

n 0

(1) (k) n_“
El =« Z(k—i—l)a +a NG

k>2

5o ® a(k) —1|:Grh.A— Griita
(0%

where (ZkZQ(k‘ +1)a® ﬁ + a % - 1) is a rescaling operator on A, which is positive

on aal2) ... (al#))2 if ;. > 1. For (a(o))k, we have

B (a0) == (a0) o = ()

which is zero in A. This proves the claim.

Let A®) be the degree k part of A which is finite dimensional. We consider the second
homogeneous grading on A®*) by giving all a(¥) homogeneous degree 1. Then EY is homo-
geneous of degree 1 and E» is homogeneous of degree —1. Let f € A®) such that Ef = 0.

We decompose
k
F=> 1
i=0
where fi contains is homogeneous of degree i. Therefore we have
Eifk =0,E1fp—1=0
Esfi=—FEifio 2<i<k
It follows from the claim that fj is a multiple of (a(o))k and all the other f;’s are uniquely

determined. This proves the uniqueness.

To show the existence, we consider the lagrangian in Eqn (6.48))

/ 2miz Z AL a(2))

k>—1

_ / Qj:z exp (S(\20.)(Aa(2))) ks*(lt):sintl;;f/2

_ /0271_22 exp (6)\262/2 Az8z/2> qb(z))) . alz) = 20,6(2)

(
B /C 2miz P <¢ /\/2 /\/QZ))
- /C 2miz P <¢ )
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2miz

dz Ak
N /2m‘zzkﬂ(zaﬁo‘)k'1
¢ k>0

_ / A2~ 4(2) A20: ()
C

where we use the convention that £~ = 1. Now we view a(z) as the bosonic field of the

free boson system described in section Since the normal ordered operator

1 dz
S()‘)/c omiz exp (S(Az0:)(Aa(2))) :B

is the bosonization of the fermionic operator

/ ﬁb(e)‘/22:)c(ef’\/2z)
C

2mz

which is already simultaneously diagonalized on the standard fermionic basis. It follows

/ dz . L) ‘B
C 2miz

are commuting operators on the bosonic Fock space, where the normal ordering relation is

that

given by
212 .
a(z1)a(ze) = ﬁ—k sazr)a(ze) g if |21] > |22
If we rescale A — VA, then
dz 1
: hz0, ktly
‘LQMZ(k+UN¢Z ) lis

are commutating operators on bosonic Fock space if we impose the normal ordering relation

hzl Z92

a(z1)a(z2) = ( +a(z)a(ze) g if |21] > |22]

21— 22)2

This is precisely the commutativity property, i.e., we can take

This proves the existence. 0

6.5. Proof of mirror symmetry. In this section, we prove Theorem
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Proof of Theorem [6.1] By Corollary

e 1 1

dpg - - 1 i Lo =) — (kit1) ... =

E q*h <| |1 Tk, (w)> ) 7__111}1010 l% W <FLP€ (1,7); 5 dwl SR
= gsms

a>0 L—oo G

dwﬁ(k"+1))
C7l

where W is the summation of all connected Feynman diagrams with propagator hPX (1, 7)

and n vertices given by

/ dwﬁ(k"Jrl), 1<i<n
C;

where C;’s are cycles on the elliptic curve E; representing the class [0, 1] and are chosen to
be disjoint, and £*) is the local functional on PV%? defined in Eqn 1}

On the other hand, we have

1
lim F"[o0] [t%,.-- ,t’fm} — lim lim W (hPeL(T;T); /
T—00 T%ooijgo h o

dwg®) .. 1/ dijn))
) 7h Cn

where J*) = goﬁgjg(k) are local lagrangians on PV%’S which contain only holomorphic
9>
derivatives. By lemma [6.14] and the proof of existence in lemma [6.15

/ dwT® — / dw D
C; C;

7

This proves the theorem. U
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APPENDIX A. L., ALGEBRA

We will fix a ring R which contains Q. All algebras, modules and tensor products are

over R unless otherwise specified.

A.1l. Ly structure. Let g be a graded module

g= @ gn
nez
where g,, has degree n. Consider the reduced graded symmetric product
(A1) S (a[1]) = € Sym™ (g[1])

n>1

where [1] is the shifting operator such that

o[l = gnt1

and Sym* is the graded symmetric product. S (g[1]) has a graded commutative co-algebra
structure. The co-product A is given as follows: for any vi,--- , v, € g[l], viva - - v, gives

an element in Sym” (g[1]), then

(A.2) vivg vy = A(vivg - cvy) = Z e(I,I%vr @ vre

IC{I,,?’L}
here the summation is over all subset I of the indices {1,---,n}, I¢ is the complement
of I. For each I, we choose some order for elements in I,1¢. Then if I = {iy, -+ i},

we write v; = v, - --v;,. €(I,1°) is the sign by permuting v; - - - v, into the order vrvre in
Sym’, (g[1]). It’s easy to see that the formula doesn’t depend on the choice of the order in
I, I¢

Definition A.1. A structure of L., algebra on g is given by a nilpotent coderivation of

degree one @ on S (g[1]) which satisfies

(A.3) R*=0, AQ=(Q®1+12Q)A
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This is equivalent to saying that the triple (5’ (g[1]), A, Q) is a dg-coalgebra.

The Lo structure @ is completely determined by

(A4) Qr, - Sym¥ (a[1]) 2 S (g[1]) — g[1]

where the last map is the projection to Sym®(g[1]) = g[1]. In fact, given vy,--- ,v, € g[l],

we have

(A.5) Qur--v)= > eI, IQ (vr) vre

Ic{l’ ,’T'L}

where |I| is the size of I.

Definition A.2. A L., morphism between two L., algebras g, g’ is a degree zero homo-

morphism

F:5(g1)) - S (g]1))
which is compatible with coproduct and coderivation, i.e.
(FeF)A=AF, FQ=Q'F

where A, A’ and @, Q' are the coproducts and coderivations on S (g[1]) and S (g'[1]) re-

spectively. In other words, F' is a morphism of dg-coalgebras.
Similar to , F is determined by

(A.6) Fr - $4(01[1)) = S(g2[1]) = g2[1]

and for any vy, -+, v, € g1[1],

eI, I,
An  Foow)=Y Y g Ry )
r I 7'“717‘7 ’
LU-UL={1 n}

Here the convention for e(Iy,--- , I,) is similar to (A.2).

Example A.3 (DGLA). A differential graded Lie algebra is a Ly, algebra g with Q =0

for k > 2. If x € g, we will use deg(z) to denote the degree of x, and z[1] to denote the



corresponding element of g[1]. We define a differential on g by requiring
(dx) [1] = —Q1 ([1])
and a bracket [,] on g by requiring
([, y]) [1] = (=1)*5@ Qp (2[1]y[1])
Now we explore the condition @ = 0. For any = € g,
Q* (2[1]) = Qiz[1] = (d*z) [1] = 0

which implies that
d?=0

For any z,y € g,

Q ([1)y[1]) = (—1)Wes@FDERWITIQ (y[1][1])

which implies that
[2,) = —(~ 1) sy

Q* (el1lyl1]) = QuQa (x[Uly[1) + Q2 ((Qual) yl1] + (—1)* ) af1] (Quy(1) )

= — (=) (dlz,y]) [1] = (~1) 4 ([, y)) [1] +

=0

which implies that
dlz,y] = [dz,y] + (—1)"¢W) [z, dy]

For any z,vy, z € g,

Q3 (2[lyl]=1]) = Q2 ((Qa(z[Uy[1])) 2[1]) + (~1)* B+ Qs ([1] (Q2(y[1]2[1])))

(1)l e, (y[1] (Qa(2[1]2[1])))
= (=)W [z, y], 2[1] + (~1)* W [z, [y, 2] [1]

(1)o@ sty aesli y, [g,2])1]

([z, dy]) [1]

161
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which implies

([, 4], 2] = [z, [y, =]] — (~1)2e@ 4Oy, [z, 2]]

It’s easy to see that all the other relations in Q% = 0 will follow from the above identities.
Therefore L., algebra structure with @ = 0 for k£ > 2 is equivalent to the differential

graded Lie algebra structure.

Example A.4 (Differential forms on graded commutative algebra). Let A be a graded
commutative k-algebra, where k is the base field. The tangent space is defined to be the
space of graded k-derivation

Ty = Derg(A)

Given D € T4, we will use |D| to denote its degree as a map of graded vector spaces. Then
D(ab) = (Da)b + (—1)PlllaDb  Va,be A
T4 has a natural structure of graded Lie algebra, with the Lie structure given by
[Dy, Dy] = Dy Dy — (—1)/P1lIP2Ipy D,
and left A-module structure with
(aD)(b) = aD(b) Va,be A
The differential forms are defined by

0y = Hom (S (Ta[1]), A) = €D Sym’ (24)
n>0

where S (T4[1]) = [ Sym’ (Ta[l]) and QY = Homyu(Ta[l], A) is the space of Kihler
differentials. "

Here we use the following convention for the shifting operator [1]: if M is a graded A-
module, M|1] is the degree one shifting of M, then the A-module structure on M|[1] is given
by

a-(m[l])) = (=D am)[1], Yac A,me M
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() can be viewed as the Chevalley-Eilenberg complex of the graded Lie algebra T4
valued in A, which is naturally a T4-module. It is endowed with the Chevalley-FEilenberg

differential d, which is also uniquely determined through the following

(1) If f € QY = A, then df € Q) is determined by

df (X[1]) = (-1)¥ X (f)

for X € T4. By our convention, df is obviously A-linear.
(2) d*>=0
(3) d(apB) = (da) B+ (—1)*ladB, for any «, B € QY.

A.2. Maurer-Cartan equation.

Definition A.5. Let g be a Ly, algebra, b € g[l]op = g1. The Maurer-Cantan equation for
b is defined to be

=0 (4)

We will use the notation

k
Q.= Y Qs Slalt) + glt), =30

k>1 k

Then the Maurer-Cartan equation can be written as
(A.9) e Q. (") =0

Let F: (g,Q1) — (¢, Q2) be a Lo, morphism of L., algebras. We will denote by

then

1 F, (bY)--- F, (b
SR> @) m( )

L .l . (AR
T 117"'717‘711+"'+17':k



164

Therefore
QL) = QLF (") = F.Q(e") = Fu(Qu(e")e")
hence the morphism
b— F,(e)

preserves the solutions of Maurer-Cartan equation.

Definition A.6. The Maurer-Cartan functor of a L., algebra g is the functor

MC, : {graded commutative Artin algebra} — sets

A= MCy(A) = {b € (@@ma) Lol 3 #Qu (V) = 0}

k>1

from graded commutative Artin algebras to sets, which sends A to the space of solutions

of Maurer-Cartan equations of g ® m4. Here m 4 is the nilpotent maximal ideal of A.

MC, is indeed a functor since we have seen that morphism of L., algebras preserves the
solutions of Maurer-Cartan equations.

MCyq can also be understood from the viewpoints of functor of points. Let A a graded
commutative Artin R-algebra, with m4 the maximal ideal. The dual m} has a natural co-
product structure which we denote by AmX , and we endow m} with the zero co-derivation.

Let b € (g ® ma) [1]o, which can be identified with the morphism of graded vector spaces
b:my — g[l]
and it induces a morphism of graded co-algebras

bk _
> Ak e my = S (a[1])
E>1

here Afﬂx is defined to be

Ak, = (Amx ® 1®k—1) (Amx ® 1®’f—2) (Amx ® 1) Ay
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and we have Afn v = 0 for k sufficiently large since m 4 is nilpotent. Then the condition for

b satisfying Maurer-Cartan equation says precisely that the map %Afn_vl is a morphism
E>1 A
of dg-coalgebras. Therefore

MCy(A) = Hompge (m}, S (a[1]))
where DGC refers to dg-coalgebra.
Example A.7. If g is a DGLA. Let x € g;. The Maurer-Cartan equation is
1
Q1(z[1]) + 5 Q2 (2[1]2[1]) = 0

which is equivalent to

1
dac+§[x,x] =0

This can be viewed as the deformation of the differential d to
d—dy =d+ [z,—]
and Maurer-Cartan equation says that d2 = 0.

A.3. Homotopy. Let g be a Lo, R-algebra. We consider the graded vector spaces
glt, dt]

Here t be a variable of degree 0, and dt is of degree 1. We have an induced dg-coalgebra

structure on

S (a[1][, dt])

The co-derivation is given by

Q + dy

where @Q is the co-derivation induced from that on S (g[1]) and d; = dt A %. This gives a

L structure on gt, dt]. For ¢ty € R, we have the evaluation map of L, algebras

Evali_y, : glt.dt] — S (g)

P(t)+QM)dt — P(t)
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Definition A.8. Two L., homomorphisms Fy, Fy : g — ¢ are said to be homotopic to
each other, if there exists a Lo, morphism F : g — g'[t, dt] such that F; = Eval;—goF and
Fy = Eval;—; oF. A L, homomorphism F : g — ¢ is said to be homotopy equivalence
if there exists a Lo, morphism G : g’ — g such that the compositions F o G and G o F are

homotopic to identities.

Proposition A.9. IfF : g — ¢ is a Lo, homomorphism which induces a quasi-isomorphism

of complexes
F:(S(ol1), Q1) — (S (a'1]), @)

then F' is a homotopy equivalence.
Proof. See for example [Kon03|, [Fuk]. O

A 4. Deformation functor.

Definition A.10. Let g be a L, algebra, and by, by be two elements of g[1]p which satisfy
the Maurer-Cartan equation. We say that b; is gauge equivalent to by if there exists be
(g[1][t, dt]), such that b satisfies Maurer-Cartan equation and Eval,—o(b) = by, Eval_;(b) =
bs.

Example A.11. Let’s consider the case that g is a DGLA. Let x(t) + y(t)dt be an element

of gl[t, dt] which solves the Maurer-Cartan equation. Then
1
(d+dyg) (x(t) + y(t)dt) + i[x(t) +y(t)dt, z(t) + y(t)dt] =0

or equivalently
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Given a Lo, algebra, we define its deformation functor by

Defy : {graded commutative Artin R-algebra} — sets

A= Defy(A) = MCy(A)/ ~

where the equivalence relation ~ is the gauge equivalence.
In explicit deformation problems, the deformation functor is usually realized as a defor-
mation functor of certain L, algebra. The good thing about L, structure is that homotopy

equivalent L., algebras characterize essentially the same deformation space. More precisely

Proposition A.12. If g is homotopy equivalent to ¢’ as Lo, algebras, then the deformation

functor Defy is equivalent to the deformation functor Defy .

Proof. See for example [Kon03, [Fuk]. O

APPENDIX B. D-MODULES AND JETS

Throughout this section, X will be a smooth oriented manifold of dimension n, and E

will be a graded vector bundle on X.

B.1. D-module. Let Dx denote the sheaf of algebra of differential operators. If we choose

local coordinates x1, - ,x, on X, then a local section of Dx can be written as
0
; f[(.%') oxl

11 in
where I = {i1, - ,i,} is a multi-index, 6%, = (%) <%) , and fr(x) is zero for all

but finitely many I’s.
Definition B.1. A Dx-module is a sheaf of Dx modules on X.

Example B.2. Dx can be viewed as a free Dx-module of rank 1, where the D x-module

structure is given by composition of differential operators.

Example B.3. The sheaf of smooth functions on X, which we denote by C*°(X), is

naturally a left D x-module.
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Example B.4. If E is a vector bundle on X with a flat connection V, then E can be

viewed as a left Dx-module. Locally, the Dx-module structure is generated by

Dy — End(E)

0
81‘@

— Vg,

Example B.5. Let X be an oriented smooth manifold, wx be the sheaf of smooth top-
forms on X. Then wx has the structure of right Dx-modules. Given a section « of wx, «

is uniquely determined by the map
a:CF(X) —» C

f—>/Xaf

where C2°(X) is the space of smooth functions with compact supports. Let P be a differ-

ential operator, then the right action of P on « is defined by requiring
a-P:CF(X) — C
o [ ap
X

Example B.6 (Tensor product). Let M, N be two left Dx-modules, we can define the

tensor product as a left Dx-module by
M ®coo(x) N
The Dx-module structure is generated locally by
Oz, (M ®@n) = (0p;m) @n+m & Oy;n

where m,n are sections of M, N respectively.

Definition B.7. Let M be a left Dx-module. The de Rham complex of M is the defined
to be the complex

Qx (M) = Uy @ceo(x) M
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where the differential is defined by

(B.1) d(w@m):(dw)@m—l—Zdazi/\w@@Cim

7

Example B.8. There’s a natural complex of right D x-modules
0 = Q% ®cw(x) Dx = Ok ®coo(x) Dx =+ = Q% ®coe(x) Dx = wx — 0
where the last morphism is determined via
a®P:CX(X) — C
o [ aPy
X

which defines an element of wx. It turns out that the above complex is exact, therefore we

have obtained the quasi-isomorphism of complexes of right D x-modules
where n is the dimension of X.

B.2. Jet bundles. Let E be a vector bundle on X. We will not distinguish between E as

a vector bundle or F as a locally free sheaf. The sheaf of jets Jet(E) is locally given by

{flaea}l

where {e,} is a local basis of E, I = {i1,- ,in}  cz>0 Tuns over the set of multi-indices,

and ff* is a local smooth function. There’s a natural map
['(E) — Jet(E)
which in local coordinates x1,--- , x, is
fea = {01f"eatr

here Or f = % f. There’s a natural D x-module structure on Jet(E) generated by

0i{0rf%a}r = {0ifTea — fiT€a}r
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which gives the exact sequence of sheaves
0— E — Jet(E) — Q% (Jet(E)) — Q% (Jet(E)) — - - -
or equivalently we have the quasi-isomorphism of complex of C*°(X) sheaves
E ~ Q% (Jet(E))

There’s an intrinsic way to describe Jet(F) as follows. We consider the product X x X

with two projections p1, p2
X xX
2N
X X
Let A — X x X be the diagonal, and Ia be the ideal sheaf of A. Then
Jet(E) = limpr., (C(X x X)/IX @ p3)
k

and the Dy-module structure comes from the natural action of differential operators on
the left copy X of X x X. If we choose local coordinates x1,- -, x, on an open subset U of
X, alocal basis {ey} of E, and let 2, -+ , 2] be another copy of x1,- -+, z,, then {x;, «}}

is a local coordinate system of U x U. Then
Jet(E)|y = C°(U)|[[0x1, -+ ,0xy]] ® Spanc {eq }

where dx; = 2} — z;. An element of Jet(E)|y can be described by {ffes}r via

1

U@ = Y i) e,
I

where dz! = 622 - dxin IV =iy!- i) if T = {i1, -~ ,in}. The map E — Jet(E) is simply

given by the Taylor series

.171
(P @eal = (2 @ead = 3 o) e
1
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We can also consider the projective dual
Jet(E)Y = Homgeo () (Jet(E), C®(X))
In local coordinates, if we represent an element of Jet(E) by
f =Y I e € CRB)fon, ]
I

and represent an element of Jet(FE)V by

; 0
g:ga@e

«

where {e®} is the dual basis of {e,}. Then we have the natural pairing
<g.f>=) gl
I«

Since both Jet(E) and C*°(X) have the structure of Dx-modules, we have an induced
D x-module on Jet(E)Y. More precisely, in local coordinates, the action of d,, on Jet(E)"
is given by requiring

Or, < g, f >=< 03,9, f >+ < 9,04, f >
from which we find

0 0 o 0
I « I « I
% <9aaxf€ ) = 080 5,7 T 90 i T ©

This is exactly the natural Dyx-module structure that we would expect. In particular, it

«

shows that Jet(E)" is a locally free D x-module whose ranks equals the rank of the vector
bundle F.

We can also describe differential operators in terms of jet bundles. Let E,F be two
vector bundles on X, then the differential operators from E to F', denoted by Diff(F, F),
is just a Dx morphism from Jet(E) to Jet(F') [Cosli]

(B.3) Diff(E, F) 2 Homp,, (Jet(E), Jet(F))
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In fact, given ¢ € Homp, (Jet(E), Jet(F')), it induces a differential operator P, € Diff(E, F)) C

Homg (E, F') from the following commutative diagram

0 — E — Jet(E) — Q% (Jet(E)) — -

sl e
0 — F — Jet(F) — QL (Jet(F)) — ---

B.3. Local functionals. Let

& =T(X,E)

be the space of smooth sections in E. Recall that a local functional on F of order k is given
by a map
S:Sym*& - C

which takes the form

Slaq, -+, ag) :/XDl(al)'--Dk(ozk)dVol

where a; € &, D; : & — C®°(X) are some smooth differential operators, and d Vol is a
volume form. It’s easy to see that such local functional can be described in terms of jet
bundle by
W @Dy Symeies (xy (Jet(E)Y)
where the tensor product over D), takes care of the fact that total derivatives are zero. It
follows that the space of local functionals can be described by
Oloe(&) = wx @py [ [ Symfaee (x)(Tet(E)Y)
k>1

where we have neglected the constant functional when k& = 0. Since Jet(E)Y is free Dy-

module, the Koszul resolution (B.2|) gives the quasi-isomorphism

— x>1

O10e(6) = O (Symem(x)(Jet()")) [n]
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